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ABSTRACT 

A table algebra was defined in [1] in order to consider in a uniform way 

the common properties of conjugacy classes and irreducible characters. 

Non-commutative table algebras were introduced in [5]. They generalize 

properties of such well-known objects as coherent and Hecke algebras. 

Here we extend the main definition of a non-commutative table algebra 

by letting the ground field be an integral domain. We call these algebras 

gene ra l i z ed  t ab l e  algebras (GT-algebras, in brief). It is worth mention- 

ing that  this class of algebras includes generic Hecke-Iwahori algebras of 
finite Coxeter groups. We develop the general theory for this type of 
algebras which includes their representation theory and theory of closed 

subsets. We also study the properties of primitive integral table algebras. 

1. I n t r o d u c t i o n  

Let R be an integral domain.  An R-algebra A with a distinguished basis B 

is called a g e n e r a l i z e d  t a b l e  a l g e b r a  (briefly, GT-algebra)  if it satisfies the 

following axioms: 

TO. A is a free left R-module  with a basis B and B is finite. 

T1. A is an R-algebra with unit 1, and 1 C B. 
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~- a 

According to T3, ( , ) is a symmetric bilinear form, values of which may be 

computed by the following formula: 

For any x = ~ b e B  Xbb E A, we write Supp(x) for {b ~ B I xb :~ 0}. If 

E, D C B, then we set E D  = [-JceE,dED Supp(cd). We shall write aC instead of 

{a}C, C C B. For every C C B we write C + for the following sum, ~--~ec c C A. 

Let (A, B) and (A', B')  be two GT-algebras. Following [7] we say that  a 

homomorphism ~ E HomR(A, A') is a GT-homomorphism, if 

t To avoid confusion with complex conjugation we use * instead of the 
traditional-, [1]. 

(x ,  = t ( z y * ) .  

T2. There exists an antiautomorphism a -+ a*,a E A, such that  (a*)* 

holds for all a E A and B* -- B . t  

Let "~abc E R be the structure constants of A in basis B, i.e., 

ab= ~ AabcC, a, b E B.  
c c B  

T3. For each a, b E B, Aabl = Abal, and A~bl = 0 if a ~ b*. 

In what follows, the notation (A, B) will mean a GT-algebra A with the 

distinguished basis B. 

Following [7] we call a basis B s t a n d a r d  if the map b ~-+ Abb" 1 extends linearly 

to a homomorphism of R-algebras. We also say that (A, B) is s t a n d a r d  if B is 

standard. 

A GT-algebra will be called rea l  if R = ~ and ~ c  _> 0 for each triple 

a,b,c C B.  

Let t: A ~ R be the linear function defined by t (~be  B xbb) = x l .  As a direct 

consequence of T3, we obtain that t(xy) = t(yx), x, y E A. 

We shall say that  a basis B (an algebra A) is non - s ingu la r  if ),bb*l ~ 0 

for each b C B. In this case A becomes a l~obenius algebra, since t(xy) is a 

non-degenerate associative form on A. 

In what follows we use the notation [x[,x = ~beBXbb for the sum 

~-~beB Xb'~bb*l" In particular, [b[ = Abb*l for each b E B. If C C B, then [C[ 

wilt stand for the sum ~ c e c  H- 
We define a bilinear form ( , ) on A by setting 
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H1. ~(b*) = ~(b)*,b • B; 

H2. ~ is a homomorphism of R-algebras; 

H3. For each b • B  there exist b l E B '  and r b • R  such that rb ¢ Oand 

~(b) = rbb'. 

If (A, B) is real, then we require, in addition, rb > 0 for each b • B. 

If ~ is a bijection, then we say that (A, B) and (A', B')  are GT-isomorphic (or 

(A ' ,B ' )  is a rescaling of (A,B)).  It should be mentioned that in this case all 

factors rb, b • B, are invertible elements of R. 

A subset D C B is said to be closed (or a tab le)  subset if the R-submodule 

(c}ceD is a GT-atgebra with distinguished basis D. 

In what follows the notation D < B will mean that D is a closed subset of 

B. A routine check shows that the intersection of two closed subsets is a closed 

subset as well. This justifies the following definition. Given b • B, we define 

Bb as the minimal closed subset containing b. An element b • B will be called 

fa i th fu l  (see [1]) if Bb = B. We say that (A, B) is p r i m i t i v e  if all non-identity 

elements of B are faithful. An element b • B is called rea l  (or s y m m e t r i c ) ,  if 

b* = b, [1]. 

Examples: Let (X; G) be a h o m o g e n e o u s  c o h e r e n t  conf igu ra t ion ,  [13] (an 

a s soc i a t i on  s c h e m e  in [6]). Then its Bose-Mesner algebra is an example of a 

standard GT-algebra over Z. All structure constants of the Bose-Mesner algebra 

are non-negative, so it is also a real algebra (one can use the equivalent notion 

of cell algebras introduced in [20]). 

Let (G; X) be a transitive permutation group. Then it acts naturally on the 

set X 2. The orbits of this action, called 2-orbits in [12] (orbitals in [11]), form 

a homogeneous coherent configuration. Its Bose-Mesner algebra coincides with 

the centralizer ring of the corresponding permutation representation of G. As a 

GT-algebra it is isomorphic to the Hecke algebra Hz(G; H),  where H = Gx is a 

point stabilizer. 

If G is a semidirect product of H by Inn(H) which acts on the group H by the 

following rule: 

X (~° 'h)  : x~°h, T • Inn(H),  x ,h  • H, 

then the correponding Bose-Mesner algebra is isomorphic (as a standard GT- 

algebra) to the centre of the group algebra ZH where the distiguished basis is 

formed by the characteristic functions of the conjugacy classes of H. 

The ring of group characters with the irreducible ones as a distinguished basis 

is another example of a GT-algebra. The distinguished basis is not standard 
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unless the underlying group is abelian, but it always may be rescaled into the 

standard one. We refer the reader to [1] for more details. 

All previous examples were algebras over Z. The generic Hecke-Iwahori 

algebras of finite Coxeter groups (see [14] for the details) give examples of 

standard GT-algebras defined over the ring of integral polynomials. 

The paper is organized as follows. Section 2 contains basic facts about GT- 

algebras. 

Section 3 deals with representation theory of GT-algebras. The theory of feasi- 

ble traces developed by D. G. Higman is applied in order to obtain orthogonality 

relations for irreducible characters. In this section we also define the F r a m e  

n u m b e r  of a GT-algebra which is a direct generalization of the well-known nu- 

merical invariant of the Bose-Mesner algebra of a homogeneous coherent config- 

uration. We show that the Frame number of a GT-algebra always belongs to the 

ring that  contains the structure constants of the GT-algebra. 

As a consequence of the developed theory we obtain the following theorems. 

THEOREM 1.1: Le t  (A,  B) be the Bose -Mesner  algebra (over Z)  o f  a com- 

m u t a t i v e  association scheme (X; G) with d classes. Le t  vo = 1,vl, ...,Vd and 

m 0 -~ 1,  m l , . . . ,  md be its valencies and covalencies. Then  Fp ®z A is semis imple  

i f f  
p ~ X l ~ + l  v l . . . . . v d  . 

m l  • • • • " md 

THEOREM 1.2: Let  (X; ~) be a homogeneous  coherent  configuration on a prime 

n u m b e r  o f  points .  A s s u m e  that  there exists  k such that  Igl = k for each g E 

G, g # 1. T h e n f  

(i) The  Bose--Mesner algebra o f  (X;G) is commuta t i ve  (i.e., (X;G) is an 

association scheme in the sense of  [6]). 

(ii) Al l  non-tr iv ial  covalencies o f  (X; G) are equal to k. 

Section 4 is devoted to non-singular real GT-algebras. For real GT-algebras we 

show that  every distinguished basis may be rescaled into a standard one which 

is unique. We also extend the theory of table subsets and generalize to the 

non-commutative case well-known properties of table algebras. 

Integral GT-algebras with a standard distinguished basis are studied in Section 

5. We study the properties of primitive integral standard GT-algebras. The 

main result of this section generalizes the well-known properties of primitive 

permutation groups (see [19]). 

t Here [g[ is the valency of a relation g E G. 
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THEOREM 1.3: Let (A ,B)  be an integral standard GT-algebra.~ Assume that 

the elements of B are numbered in non-decreasing order of their degrees: [bl[ = 

1 _< lb21 _< < Iba[. Let 7r(B) i=d . . . .  U~=2 7r(lbd), where 7r(m) denotes the set of  all 

prime divisors of rn. 

If (A, B) is primitive, then: 

(i) I f  Ib21 = 1, then (A, B)  is a group algebra of  a group of prime order. 

(ii) V p ~ ( B ) ( p  _< Ib21)- 

(iii) Iflbel > 1 and gcd(lbd, lby[) = 1 for some 1 < i , j ,  then there exists 1 < k 

such that [bklllb, llbjl and Ibkl > max(lbd, Ibjl). 
(iv) If Ib21 is prime, then Ib212 Xlbjl for each j >_ 1. 

(v) I f  Ibel > 1, then Ibd < Ib~-ll(Ib21- x) for each 2 _< i. 
(vi) If[b2[ > 1, then gcd(lbd, [bali) ¢ 1 for each 2 <_ i. 

(vii) Xflb21 = 2, then Ibd = 2 for all 1 < i < d and (A,B)  is a subalgebra of the 

group algebra ZCp with B = {1} U {gi + g-i}o<i<p/2 ('here Cp is a cyclic 

group of prime order  generated by g C Cp). 

2. B a s i c  p r o p e r t i e s  

We s tar t  with the following claim: 

PROPOSITION 2.1: Let (A ,B)  be a GT-algebra. Then for arbitrary x , y , z  C A 

the following equalities hold: 

(i) (x, yz) ---- (xz*, y), 
(ii) (xy, z) = (y, x ' z ) .  

Brook (i) (x, yz) = t(xz*y*) = (xz*,y). 

(ii) (xy, z) = t(xyz*) --- t(yz*x) = (y,x*z). | 

PROPOSITION 2.2: Let (A, B) be a GT-algebra. Then the following hoId for each 

a,b,c,d C B:  

(i) E t e B  ~abtZ~tcd : E t ~ B  )~atd)~bct; 

(ii) Ill = 1 and Ibl = Ib*l; 
(iii) Aab¢ = Ab.a.c.; 

(iv) A~bclcl = At.oh* Ibl = A~b.olal, and )~bb'c = ~bb*c* ; 

(v) E x e B  A2abxlX[ = E ~ n  ~o'oxmbb'Axl; 
(vi) i f  (A, B) is non-singular, then A~b~ = A~b*a = Abe*a* = Ab*~*~*. 

Proof." (i) is a direct consequence of the associative law. 

t Integral GT-algebras and their degrees are defined in Section 5. 
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(ii) follows from T3 and the definition of Ibl. 

(iii) is a consequence of the fact that x --~ x* is an antiautomorphism. 

(iv) By the definition of the bilinear form, (ab, c) = AabcH. By Proposition 2.1 

(ab, c) = (a, cb*) = (cb*, a) = ~b'~lal,  

(ab, c) = (b, a'c) = (a'c, b) = ~*cblbl. 

Taking into account that  A~*cb = Ac*~b- and Ibl = Ib*l, we obtain Aa.~blbl = 

Ac*ab'H" 
The equality /~bb*c : )~bb*c* follows from the fact that (bb*)* = bb*. 
(v) As follows from (1), 

(ab, ab) -= ~ A~b~lCl. 
cEB 

On the other hand, by Proposition 2.1 

(ab, ab) -- (bb*, a'a) = ~ £bb.cA~*~clcl, 
c c B  

as desired. 

(vi) is a direct consequence of (iv). | 

PROPOSITION 2.3: Let (A, B) be a standard non-singular GT-algebra. Then: 

(i) Va,b B E eB ao b = a ob = lal- 
(ii) VaeA aB + = B+a  = lal B+. 

(iii) I f (A,  B) is real, then for each C C B and a, b e B we have ~ c e C  )~acb < H" 

Proo~ (i) Multiplying the sum ~ e B  Aaxb by Ibl we obtain 

~_, Aaxblbl = ~ Ab*ax*lXl. 
xEB x 6 B  

Since the map x ~-4 Ixl is a homomorphism, the right hand side is equal to 

HIb*l = lalH. Cancelling by Ibl we obtain ~ C B  &axb ---- H-  

In order to prove the second equality we apply * to the first one: 

)~xab = ~ "~a*x*b* = la*[ = lal • 
xEB xEB 

(ii) is a direct consequence of (i). 

T h e  last part  of our claim is a direct consequence of (i). 
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3. T h e  r e p r e s e n t a t i o n  t h e o r y  of  n o n - s i n g u l a r  G T - a l g e b r a s  

In this section we assume that  R is a field and B is non-singular. 

A linear function f :  A --+ R is called a feas ib le  t r a c e  [13] if it satisfies the 

identity f ( x y )  = f ( y x ) ,  x , y  E A. According to the axioms of GT-algebras the 

function t, defined in the introduction, is a feasible trace. So we may apply 

the representation theory of algebras with feasible traces which was created by 

D. G. Higman in [13]. Although this theory was developed under the assumption 

that  char(R) = 0, it remains valid if we require separability of the extension R / R ,  

where/~ is the algebraic closure of R. This condition always holds if char(R) = 0 

or R is finite. 

For every a E A we define a B x B matrix M~ as the matrix of the linear 

operator x ~-~ ax,  x E A in the basis B. The map a F-~ M~ is the left regular 

representation of A. The character of this representation will be denoted by 

reg().  Clearly, reg( ) is a feasible trace on A. 

It  is easy to see that  (M~)b~ =/~abc and reg(b) = ~xEB ~bxx, b E B. Using this 

character one can define the Killing form K(a ,  b) = reg(ab). By D we denote the 

diagonal matr ix  defined as follows: Dbb = Ibl, b E B .  

PROPOSITION 3.1: (i) M~. = D M T D  -1 for each a E B .  

(ii) reg(a) = reg(a*) for each a E B .  

Proof." (i) We just compute the (b, c)-entries of both sides. 

(Ma" )bc = "~a*bc = "~c*a'b'lblH -1  = Ibllcl-1)~acb 

_ - I b l l c l - l ( M r ) b c  _- (DMr O-1)b c. 

(We used Propositon 2.2, which says that  )~acbl b] = Ab-ac* Ic*l -- ~o.bclcl ,  implying 

Iblicl-  l Aacb = )~a*bc.) 

(ii) is a direct consequence of (i). I 

The following result is well-known. 

THEOI~EM 3.2: Let  A be an associative algebra over the t~eld R.  I f  i ts Kill ing 

form K is non-degenerate,  then A is separable. 

In what follows we set 
1 , 

A : = ~ b  b. 
bEB 

PROPOSITION 3.3: Let  f :  A --+ R be a feasible trace. Then: 

(i) f * ( x )  := f ( x * )  is a feasible trace; 
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(ii) z S := ~bEB l(b*)h E Z(A) .  Ib* l  v 

Proof: Part (i) is trivial. 

(ii) Take an arbitrary a E B and consider the commutator: 

x--, f (b*) ,  , f(b*) , ,  
[zf,a] = 2..., ~ ; - ( - ( a o -  ba) = E ~ -tAab¢ - Ab,~)c. 

bEB ' ' b,cEB 

By Proposition 2.2 

~,ab~H = ,X~-ab*lb*l, ~Xb~clcl = -X~-b~*la*l = ~Xa~-b*lb*l. 

Therefore 

implying that  

1 (A.b~ - Ab~c) = ~ ( A c . ~ b .  -- A ~ . b . ) ,  
Ib*l 

1 E ( A ~ . a b . f ( b .  ) _ Aa~.b.f(b*)) Iz~,a] = Z ~  
cEB bEB 

= E ~c[ (f(c*a) - f(ac*)). 
cEB 

The latter equality shows that  z S belongs to the centre Z(A).  I 

PROPOSITION 3.4: The following properties hold: 
reg b* 

(i) A = ~b~B ~ b .  
(ii) A E Z(A) .  

(iii) Let M K , M A  be the matrices of K and A in the basis B. Then 

MK • T .  D -1 = MA, 

where T is the matrix of the permutation b ~-~ b* in the basis B. 

proof." (i) 

b*b N-" Ab*bCc 
A;E H-E ~-V 

bEB bEB 

) - -Z;  c= i~ ~o.b-b* 
cEB E \b6B 

reg(__c*) c 
c = E H " 

cEB 

Part  (ii) follows immediately from Proposition 3.3, since reg is a feasible trace. 
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(iii) Part  (i) of our claim implies that  

reg(c*) 
M z ~ = ~ M ¢ .  

cEB 

Therefore 
reg(c*) 

(MA)~b : Z H ,kcab. 
cEB 

By Proposition 2.2, Acablbl = Ab*c~. lal = A~b-c" Icl, w h e n c e  

reg(c*) 1 
(M,~)~b = Z Ib~ ---'x~b'~'= N K(a'b*)" 

cEB 

| 

As a direct consequence we obtain the following corollary: 

COROLLARY 3.5: Assume that (A, B) is a GT-algebra with non-singular B. I f  
A = ~b~B b'b is invertible, then A is semisimple. [b[ 

3.1 ORTHOGONALITY RELATIONS FOR SEMISIMPLE GT-ALGEBRAS.  I n  this 

subsection we assume that  (A, B) is semisimple and B is non-singular. Le t /~  be 

the algebraic closure of R and A~ = / ~  ®R A. Here and later on we shall assume 

that  the extension R / R  is separable. If char(R) = 0 or R is finite, then this condi- 

tion is always satisfied. In particular, the Bose-Mesner algebra of a homogeneous 

coherent configuration, defined over Q, satisfies the condition char(R) = 0, and, 

therefore, we may apply to these algebras all the results of this section. 

Let p l , . . . , p ~  be a complete set of pairwise non-isomorphic irreducible repre- 

sentations of An and Xi = tr(p i) be their characters. Then A~ ,.~i=1 m,t J, 

where mi = X i ( 1 ) .  Clearly ~i=li=~ rni2 = IB]. 
According to [13], t = }2~=1 z i x ,  where z~ E/~ are feasible multiplicities. Since 

t(xy) is a non-degenerate bilinear form, all zi's are non-zeroes. 
i b Denote by Pyk( ), 1 <_ j , k  <_ mi, 1 < i < r the ( j ,k)-entry of the mi x mi- 

matrix pi(b), b E B. Let A be the set of all triples (i ,j ,  k), 1 < i < r, 1 <_ j <_ mi, 
l < k < m i .  

For an arbi trary triple A = (i, j,  k) E A we set: 

m~ := mi, pa(b) :-- Pjk( ); := ( i ,k , j );  zx := zi. 

(Here we use the notation of [13].) 

If a E Gal(/~/R) a n d  pi: A --+ Mm(/~) is an irreducible representation, then 

the map pi~: A --+ Mm(R) defined by 

p i~(b) = pi(b)~, b E B 
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is an irreducible representation of A h as well. Thus Gal(/~/R) acts as a 
permutat ion group on the set {pl . . . , p r }  of the irreducible representation of 

A. 

THEOREM 3.6 (Section 5 of [13])): 

(i) Y'~-beB ~p~(b*)p,(b)  = ~.x,tz~ -1, A,/z E A ((5.3), [13]); 

(ii) }--~xeh zapx(b)px~(c) = (~bc*[c[,b,c E B ((5.5), [131); 

(iii) ~bEB 1 * 5 "-m-/- i =  1,. r ((5.4), [13]); INxi(b )XJ( b )=  ~3 ~ ,  "', 

(iv) the elements 

b* 
Jx~ = z~ ]__, ~ o ,  s =  l , . . . , r  ((5.7), [131) 

b E B  ' ' 

are the minimal central idempotents of A R. 

Let U be a A x B-matr ix  entries of which are defined as follows: 

U~,b = p)~(b). 

Denote by Z the A x A diagonal matrix with the entries Zx ~ = z~ and by S the 

h x A-matrix of the permutat ion A ~-~ A t. 

LEMMA 3.7: Let (A, B) be a semisimple GT-algebra with a non-singular distin- 

guished basis B. Assume that there exists a UFD~ Ro C R such that R is a field 

of fractions of Ro and A~bc E Ro for each a, b, c E B. Then: 
(i) for each a, b E B, (U T.  S .  U)~b = ~-(ab), where ~-(x) i=r = ~ i= lX i (X ) ,X  E A R ;  

(ii) T(ab) E Ro for each a, b E B; 

(iii) 
1 

• - -  E R 0 ;  ( 2 )  $-(A,B) := Ibl [ I  zx 
bEB ,~EA 

(iv) i f ( A , B )  is standard, then [B+[-25r(A,B) E Ro. 

Proof'. (i) 

i = r  j = m l  k=rn~ i = r  

( UT" S ' U ) ~ b = E O : ~ ( a ) o x ' ( b ) = E  E E O}k(a)oik j (b)=E Xi(ab)=T(ab)" 
AEA i = l  j = l  k = l  i=1 

(ii) Since ab = ~ c e B  AabcC, Aabc E Ro, it is sufficient to show tha t  r(a) E Ro 

for each a E B. 

t UFD is an abbreviation of a "unique factorization domain". 
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For each a E B, xi(a) belongs to the integral closure/~0 of R0 in/~. Therefore, 

~(a) •/~0. 
On the other hand, for each c • Gal(/~/R) we have 

i= r  i= r  i=r  

7-(a)° = E (X~(a))~ = E X,:~ (a) = E x~(a) = v(a). 
i=1 i=1 i=1 

Therefore, T(a) E R. Since R0 is a UFD,/~0 f-I R = R0 implying ~-(a) E R0. 

(iii) According to Theorem 3.6, part (i), 

U. T .  D-1U T = Z - 1  • S. 

Therefore, 

det(U) 2 det(T) H Ibl-1 = det(S) 1-I z~-l" 
bEB AEA 

Since S and T are permutation matrices, 

de t (U)2_ - 4- 11 Z~'I"  l--I Ibl. 
AEA bEB 

On the other hand, 

det(U) 2 det(S) = det(T(ab))a,bEB E Ro. 

Therefore, 

9r(A'B) = r I  Ibl l-I  Z;1 E R0.  
bEB AEA 

(iv) Consider the following basis of A: 

eb - - - -  if b E B \{1}.  

Tile determinant of the transition matrix from the basis B to the above one is 
equal to 1. Therefore, 

det(T(ab) )a,bEB = det(T(eaeb) )a,b6B. 

Since b ~-~ Ibl is an irreducible representation, it coincides with some pi. Without 

loss of generality we may assume that pl(b) = Ibl, b E B. By Proposition 2.3 (ii), 

bB + = B+b = Ibl B+. Therefore, 

IblT(el), b ¢ 1, 
r(ebel) = IB+lr(el),  b = 1. 
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By Theorem 3.6 (iii) 

E x I (D*)x i (D)  - O, 

beB Ibl 

whence ~beBXi(b) = 0 for each i > 1. 
7-(ele1) = [B+[T(el) = [B+[ 2. 

{eb}beB has the following form: 

Therefore, m(B +) : 113+1, whence 

Thus the matrix of the form ~- in the basis 

IB+I 2 ..., IbllB+l... ":<') 
Ibllg+l ... 

where • denotes the elements 7-(ebea), a, b E B \{1}.  Since r(ebea) E Ro tbr all 

a,b E B \{1} ,  the determinant of the above matrix is equal to IBI2r, r E 17.o. 

Remark: If (A,B) is the Bose-Mesner algebra (over C) of a homogeneous 

coherent configuration (X; G), then 

A 
Z i = ~-~i ~ 

where f/ is the multiplicity of the representation pi in the decomposition of the 

standard module CX (see [22], [20])fl In this case 

9V(A, B) = IXl d l-lb~s Ibl 
i=r rn? H,=~ f l  ' 

where d = dim(A) and IbI is the valency of b E B. The number 

ixid_2 1-Ib¢~ jbl 
i = r  m? 

Ni=I fi ' 

is known as the Frame quotient of the configuration [21]. For this reason we shall 
call ~ (A ,  B) the Frame number of the GT-algebra (A, B). i t  was shown in 
[20] that the Frame quotient of an arbitrary homogeneous coherent configuration 
is a rational integer. Thus part (iii) of the above Lemma is a direct generalization 

of this fact. 

t The multiplicities fi are called covalencies if A is commutative. 
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LEMMA 3.8: Let (A, B) be a semisimple algebra with non-singular distinguished 
basis. Denote mi := Xi(1), i - -  1, . . .  ,r. Then: 

i : r  m i  j . 

(ii) Z=~(A ~ 1 )  O. 
L = I  - -  ~ 

~=r _~)m~. (iii) The characteristic polynomial of MA is equal to 1-[i=1 (x - z~ 
m? 

(iv) det(MK) = + [ I b e B  Ibll-L=~ ~ • 

Proof: (i) Since reg: A --+ R is the regular character of a semisimple algebra, 
i : r  reg ---- ~i=1 mix~. Therefore 

reg(b*) b= ~ ~ m i x i ( b ' ) b  ~-'i=rrniJ 

b c B  bEB i : l  Ibl i=1 

(ii) It follows from the previous part that 

( A -  m~l)Jx~ = 0. 
Z~ 

Since Jx~, 1 < i < r are primitive central idempotents of A, 

i = 1  Zi ] 

To finish the proof it is enough to note that I -- ~ i=1 Jxj" 
2 is the rank of J×j in the left (iii) follows easily from (i) and the fact that m~ 

regular representation. 

(iv) By Proposition 3.4 det (T)det(MK) -- de t (D)de t (Ma) ,  whence det(MK) 

-- ± l-[bOB Ibl det(MA). By the previous part 

2 

det(MA) = -t- l~I (m-~-~) m~ | 
i : l  

Proof  of Theorem 1.2: Let A be the Bose-Mesner Z-algebra of G and B = 

{Bglb C 6} be its distinguished basis. 

Let m0 = 1, m l , . . . ,  mr be the degrees of the irreducible complex representa- 

tions of A and f~ be the multiplicity of the i-th irreducible representation in the 

decomposition of the standard module CX. Denote d = dim(A). It follows from 

Proposition 3.4 that the eigenvalues of the matrix kMA are algebraic integers. 
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On the other hand, the remark after Lemma 3.7 and Lemma 3.8 imply that  the 

eigenvalues of MA are ~ ,  i = 1 , . . .  ,r .  Therefore 

k m~lX[ EZ ,  i = l , . . . , r .  
f, 

But IXI is prime and mif i  < IXI, k < IXI. Therefore ~ E Z, or, equivalently, 

£ k 
--  u i E N ,  i = l , . . . , r .  

m i  ~ i  ~ 

Now we can write 

On the other hand, 

I X l -  l =  E m i f i =  - -  . 
i = 1  4 = 1  u i  " 

r 

IXI - 1 = k ( d -  1) = E k r n ~ "  
i=1 

Comparing both equalities we obtain ui = i for each i = 1 , . . . ,  r. Thus f~ = rnik, 

i = 1 , . . . ,  r. Now the Frame number of the algebra (A, B) is equal to 

Jr(A, B) = IX[ d 1 
r m ?  " 

l - I i : l  m i  " 

Since IXI is prime and strictly greater than mi, the above number may be an 

integer only in one case: m~ : 1 for every i = 1 , . . .  , r .  | 

LEMMA 3.9: Let (A, B) be the Bose-Mesner algebra of a homogeneous coherent 

configuration of degree n with d classes. Denote by G a (d + 1) × (d + 1)-matrix 

whose entries are defined by the formula 

Then 

det (xG - n D ) =  iF(A, B) I - I  (m~x - fi) m` , 
i = l  

where mi is the degree of the i-th irreducible representation and fi is its 

multiplicity in the decomposition of the standard module. 

Proof." By definition Gab = K(a,b*), or, equivalently, G = MKT.  

Proposit ion 3.4 (ii), G = M a D  and we have 

2 

= • 

i=t zi / 

By 
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Now by substituting x -1 instead of x we obtain 

2 

H( det(D - xG) = det(D) 1 - m i x  e* 
i=l zi / 

det(xG - D) = det(D) m i x  - 1 
i=l \ zi  

2 ? 

= det( )/I z' 
i=1 \ zi ] i=1 m i  ] 

H( ) l-I  z~ ~ = 9C(A, B m m~ x - . 

i : 1  i= l  

After substitution of zi = f~/n and x / n  instead of x we obtain 

det ( - c -  Dj : ~(A, B) , ~  
i=1 ?Tt'i 

2 

d e t  ( z a  - nO)  = f ( A ,  B )  I - [  m~ ~ z - , 
i=1 m i  ] 

as desired. | 

Theorem 1.1 is a direct consequence of the following claim. 

THEOREM 3.10: Let (A, B)  be a commutative semisimple GT-algebra with non- 

singular B defined over the field R. Assume that R contains a UFD Ro such that 

)~bc E Ro holds for all a, b, c E Ro. Assume that R is a field of fractions of Ro. 

Denote by RoB the Ro-algebra generated by B. 

Let I be a maximal ideal of Ro and F = Ro/ I .  Assume, in addition, that the 

algebraic closure F is a separable extension of F. Then the F-algebra AF :--- 

(ROB) / ( IB)  is semisimple if  and only if  the Frame number ~-(A, B) is non-zero 

modulo I. 

Proof." Since F / F  is a separable extension, a finite dimensional commutative 

F-algebra is semisimple if and only if its Killing form is non-degenerate. The 

determinant of the Killing form of AF in the basis B is the residue class of the 

determinant of the Killing form of RoB in the basis B. By Lemma 3.8 the 

determinant of the Killing form is equal to 

II ,b, II m~. 
bEB ~EA Z~ 
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Since A is commutative, m:~ = 1, for each A C A. But in this case the above 

product is equal to ~-(A, B) up to a sign. I 

3.2 THE REPRESENTATIONS OF REAL GT-ALGEBRAS. In this subsection we 

assume that (A, B) is a non-singular real GT-algebra, i.e., 

Va,b,cEB "~abc C R, Aabc >_ 0 and /~bb*l > O. 

Since the extension C/R  is separable we may apply the results of the previ- 

ous subsection for studying real GT-algebras. In what follows we shall use the 

following notation: 

R R > ° = { r e R I r > 0 } .  

THEOREM 3.11: A is a semisimple algebra. 

Proof: Let J be the Jacobson radical of A. Since * is an antiautomorphism of 

A, J* = J. 

Assume that J ~ {0}. J is nilpotent, hence there exists a minimal m E N, 

m > 2 s u c h t h a t  jm  = {0}. Set I =  j ,~ - l .  By the choice of m, I ~  {0} and 

12 = {0}. Since J* = J,  I* = I.  Take a non-zero x E I, x = ~bcBXbb, Xb E R. 

Then x* = Y]~bcB xbb* E I. Further, xx* C 12 = {0}. On the other hand, the 

coefficient of 1 in the product xx* is equal to ~bcU Abb .1x2 > 0, a contradiction. 

I 

This claim implies that Ac = C ®~ A is isomorphic to a direct product of full 

matrix algebras 

AC -~ ~]~ Mm~ (C), 
i ~ I  

where mi, 1 < i < r are the degrees of the irreducible representations of Ac. 

Computing the dimensions we obtain 2-,i=1 mi -- ]BI' 

An algebra homomorphism f:  A -4 R is called a deg ree  h o m o m o r p h i s m  if 

f(b) > 0 holds for all b e B. 

PROPOSITION 3.12: It" there exists a degree homomorphism, then it is unique. 

Proof: 

implies 

Let f ,  g be two degree homomorphisms, f ~ g. Then Theorem 3.6 (iii) 

f(b*)g(b) _ O, 
beB Ibl 

a contradiction. I 
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PROPOSITION 3.13: For each a E B we have aB = B. 

Proof: We have to show that for each c G B there exists b E B with Aab¢ # 0. 

By Proposition 2.2 (v), (c*a,c*a) >_ [alic I > 0. Therefore Supp(c*a) # 0. Take 

an arbitrary b E Supp(c*a). Then )~c'ab ~ 0, implying Aab-c # 0, as desired. 

I 

The proof of Theorem below is a direct generalization of the proof of Lemma 

2.5 of [11 . 

THEOREM 3.14: There exists a unique degree homomorphism f: A -+ C such 

that f(b) = f(b*) holds for each b e B. 

Proof: Consider the element B + = ~beB  b. Its matrix MB+ in the left regular 

representation is equal to the sum MB+ = ~b e B  Mb. By Proposition 3.13 all 

entries of MB+ are positive real numbers. By the Perron-Frobenius theorem there 

exists a unique maximal eigenvalue, say d, of multiplicity 1. The corresponding 

eigenvector z = ~ e B  vbb has positive coordinates vb. It is easy to see that  zb is 

also an eigenvector of MB+ with the same eigenvalue d. Therefore zb = f(b)z  for 

a suitable f(b) C C. Since all coefficients of z are positive reals, Supp(zb) = B 

and f(b) E R>0. Thus there exists a function f :  B --~ ~>0 such that  z .b = f(b)z.  

Now we can write 

whence 

f (b ) f (a)z  = z(ab) = z ( E  )~abcC) = ( E  ~bcf(c))z ,  
ccB cEB 

f (a) f (b)  = ~ )~abcf(c), 
cEB 

proving that  f is a homomorphism. Since f(b) > 0 for each b E B, f is a degree 

homomorphism. To finish the proof it is sufficient to show that f(b) -- f(b*) 

holds for each b C B. Consider the map g: b ~-+ f(b*), b E B. Since * is 

an antiautomorphism and f is a homomorphism into a commutative algebra, 

g is also an algebra homomorphism. Since g(b) = f(b*) > O, g is a degree 

homomorphism. By Proposition 3.12, g = f .  | 

Since every real GT-algebra has a degree homomorphism, one can always 

rescale it into the standard GT-algebra. If f is the degree hor0omorphism of 

(A, B), then the number o(B) = ~beB  f(b)2/Ibl is invariant under rescaling [1]. 

Following [1] we shall call it t h e  o r d e r  of (A, B). 
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THEOREM 3.15: Let f be the degree homomorphism of a real non-singular 

GT-algebra (A, B). Denote 

b~ f(b)~ B~ B}. = ~ - o  and = {bS]b•  

Then 

(i) (A, B s) is a standard real algebra isomorphic to (A, 13). 

(ii) If (A, B ~) is a standard real algebra obtained by a rescaling from (A, B), 

then B ~ = B ~. 

Proo~ (i) Denote by A~Sbsc~, a s,b s,c s • B s the structure constants of A in 

the new basis B s. Since b ~ ~-~ f(b ~) = f2(b)/ib] = A~b~. 1 is an algebra homo- 

morphism, (A, B ~) is a standard real GT-algebra. 

(ii) Since B '  is a rescaling of B, each b I • B '  is of the form b' = #bb, where 

#b > 0. Since B '  is standard, the map g: b ~ ~-~ AD,(b*),I = #~]b] is an algebra 

homomorphism. Therefore g(b) = #blbl is a degree homomorphism of A. By 

Proposition 3.12, g(b) = f(b), whence #b = f(b)/ib] and the claim follows. I 

4. Properties of  real standard GT-algebras 

In this section we assume that  (A,B) is a real standard and non-singular 

GT-algebra.  

Let x c A be an arbi trary element. We define the following subsets: 

L ~ = { b • B I b x = [ b [ x } ;  R ~ = { b • B [ x b - - [ b [ x } ;  S ~ = L ~ n R ~ .  

The following claim was proved in [5]. 

PROPOSITION 4.1: Let (A,B)  be a real non-singular and standard GT-algebra. 

Then for every x • A, x ~ O, L~, Rx, Sx are dosed subsets orB.  

Remark: This Proposition was proved in [5] for combinatorial algebras which, 

in our new terminology, are real non-singular and standard GT-algebras. 

Analogously, for each A C B we define 

L A = { b c B I b A c A } ;  R A = { b c B I A b c A } ;  S A = L A N R A .  

The following statement connects these definitions with the previous ones. 
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PROPOSITION 4.2: Let A C B be an arbitrary subset.  Denote A + = ~ a E A  a. 

Then the following equalities hold: 

(i) LA = LA+; 

(ii) RA = R A + ,  

(iii) SA = SA+. 

Proof: The  third par t  of the claim is a direct consequence of the first and second 

parts .  Pa r t  (ii) follows from (i) by applying the an t i au tomorph i sm *. Thus  we 

have to prove only the first part .  

The  inclusion LA+ C LA is evident. Let us prove the reverse inclusion. 

Take an a rb i t r a ry  b E LA. Then  

(a) h A +  = 
aEA 

where #~, a E A are non-negat ive real numbers .  By Proposi t ion 2.3 par t  (iii), 

#~ <_ Ib] for all a E A. Applying ] I to bo th  par ts  of (3) we obta in  

IbllA+l _- ~ # ~ l a l  • 
aEA 

Therefore  #~ = IbI for all a E A. Thus  LA C LA+. I 

Given a E B,  we associate a g r a p h  F~ (see [10]) as follows: 

V(Fa) = B,  E ( r a )  = {(b,c) I )~abc ~ 0}. 

Since Ms* = D ( M T ) D  -1, F~. = P T, where P T is obta ined  from Fa by invert ing 

its edges. 

The  following fact is well-known in the theory of associat ion schemes. To make  

the text  self-contained we reproduce its proof. 

PROPOSITION 4.3: Let a E B be an arbitrary element. Then the following 

conditions are equivalent: 

(i) a is faithful; 

(ii) Fa is strongly connected. 

Proof: (ii)=~(i) Assume tha t  F~ is s t rongly connected.  Then  for each b E B 

there  exists a pa th  b0 = 1, b l , . . .  ,bm = b such tha t  (b~,b~+~) E E(r.). This  is 

equivalent to A,b~b~+l ~ 0 for every i = 0 , . . . ,  m -- 1. Therefore  b E Supp(a  m) C 

B~, implying B~ = B.  
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(i)=~(ii) Assume that Fa is not strongly connected, i.e., there exists a partition 

B -- BoUB1, B0 ¢ 0, B1 ~ 0 such that A~bc = 0 for any b E B0 and c E B1. Then 

Supp(aB0) C B0. By Proposition 4.2, a E LB+. Since a is faithful, B~ = B. 

Therefore LB+ = B, implying B0 = B, a contradiction. I 

PROPOSITION 4.4: Let  (A, B) be a real GT-algebra with s tandard B. Then for 

each a E B and any C C B the following two conditions are equivalent: 

(i) Supp(a*a) C L c *  ; 

(ii) there exists  D C B such that  aC + = laiD +. 

Proo~ (i) ~ (ii). Supp(a*a) c Lc+ ¢=~ a*aC + = ]a]2C + ~ (a*aC + , C  +) -- 

lal21C+l ¢v ( a C + , a C  +) = ]al21C+]. Denote D := Supp(aC+). Then aC + = 

~-~dED #rid and lat2]C[ (aC +, aC +) 2 = ~-- ~ d E D  #did[ • Since #d --< laI, the right- 

hand side of the latter equality is less than or equal to ]a I ~-:~deD #dldl = ]al2]C[ • 

Therefore #~ = lal holds for all d E D. 

(ii) ==~ (i). First we show that a*D C C. Assume the contrary, i.e., there exist 

d E D, f • C such that A~*df ~ 0. Then ~a.fd ~ O, implying that  the coefficient 

of d in a({f}  U C) + is equal to laI + A~Sd > laI, contrary to Proposition 2.3 (iii). 

Therefore a*D C C ~ a*D + = ~ c e c  #cC,#c E R >°, implying a*aC C C. Since 

all structure constants are nonnegative, and by Proposition 4.2, it follows that 

Supp(a*a) C L c  = Lc+.  I 

4.1 CLOSED SUBSETS AND QUOTIENT ALGEBRAS. Let (A,B) be a real non- 

singular GT-algebra. Without loss of generality we may assume that B is stan- 

dard. We remind the reader that a subset C C B is closed if the subspace 

spanned by C is a GT-algebra with a distinguished basis C. It follows directly 

from the axioms of GT-algebra that C is closed if and only if 1 E C, C* = C 

and ab = ~ c ~ c  A~bcC for each pair of a, b E C. 
The following claim is an immediate consequence of the definition of "closed 

subset" and "real", and the axioms for a GT-algebra. 

PROPOSITION 4.5: A subset A C B, A ¢ O is dosed  if  and only ifSupp(ab*) C B 

for all a, b E B .  

As usual we define a r igh t  (left)  C-coset  as an arbitrary set of the form bC 

(resp. Cb), b E B. A subset CbC, b E B will be called a d o u b l e  cose t  with 

respect to a closed subset C. 

An element a E B is called l inear  (or th in)  if ha* = , ~ - 1 1 .  Since A is a 

finite-dimensional algebra, the above equality implies a*a = ~a*~11 -- , ~ - 1 1 .  

The set of all linear elements will be denoted by [_(B). 
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PROPOSITION 4.6: (i) [b[ _> 1 and equality holds i f fb is linear. 

(ii) The set L(B) C B of linear elements of B is a group. 

Proof: (i) We have that bb* = [b[1 + ~-~ceB Abb*cC. Applying [ I to both sides of 
this equality we obtain the first part of the claim. 

(ii) Let a, b E L(B) be two arbitrary elements. Since both a and b are invertible 

in A, ab is an invertible element of A. Thus, we need to show that b, a E L(B) 

implies ab E L(B). 

Indeed, by Proposition 2.2 

(4) 
cEB cEB 

On tile other hand, 

(5) E ~abcIC[ = [alibi = 1. 
cEB 

Together with [c[ _ 1 this implies )~abc ~ 1 for each c E B. Let d be an element 

with the maximal value of £~sd. Then (4) implies 

"~abd = )~abd ( E  "~abc[C[/ ~--- E "~2bc[C[ = 1, 
\cEB / cEB 

whence Aabd _~ 1. Therefore Aabd = 1. Combining this with (5) and Id[ ~ 1 we 

obtain ab = d, d E B.  I 

Remark: A part of the claim below was proved in [22] for the Bose-Mesner 

algebras of homogeneous coherent configurations. The proof given in [22] uses 

the geometrical properties of homogeneous coherent configurations. So, here we 

give an independent proof, which uses only the axioms of GT-algebras. 

PROPOSITION 4.7: Let (A, B) be a non-singular real GT-algebra with standard 

B and C _< B be an arbitrary closed subset. Then the following conditions hold 

for every b,d E B: 

(i) Cb N Cd ~ 0 ¢v Cb = Cd, similarly bC n dC ~ 0 ~:~ bC = dC, and 

CbC M CdC ~ 0 ~:~ CbC = CdC.  In particular, 

{ C b ] b E B } ,  {bC I b E B } ,  { C b C ] b E B }  

are partitions of B. 

(ii) (CbC)* = Cb*C. 
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(iii) / f  Cb = bC for each b E B ,  then CbC = Cb. 

Proo~ Let a E Cb be an arbi t rary  element. Then  Acba ¢ 0 for some c E C. 

Hence, by Proposi t ion 2.2, -~*ab ¢ 0, i.e., b E Ca.  

Thus  if a E Cb N Cd, then 

Cd C C C a  = Ca  C C C b  = Cb. 

Similarly, Cb C Cd, implying Cb = Cd. 

Let  now x E C b C  N C d C .  Then  x E Supp(clbc2) and x E Supp(c3dca) for 

suitable cl, c2, ca, c4 E C. This implies 

b E Supp(ct*xc2*), d E Supp(ca*xc4*). 

Therefore,  

Analogously  

CbC C C Supp(cl*xc2*)C C C x C .  

C d C  c C x C .  

Combining this with evident inclusions C x C  C CbC,  C x C  c C d C  we obtain  

CbC = C d C .  

Par t s  (ii) and (iii) are trivial consequences of the first one. I 

Proposi t ion  4.8 and Theorem 4.9 generalize Theorem 2 of [7]. The  proof  of 

par t  (ii) of Proposi t ion  4.8 is similar to tha t  of Theorem 2 of [7]. 

PROPOSITION 4.8: Let C < B be a closed subset and b E B be an arbitrary 

element. Then: 

(i) V~ee c .  (Cb) + = lel (cb) + a ,d  (bC) + .  c = I~1 (be)+; 
(ii) C + - b = e -  (Cb) +, b- C + = ~-  (bC) + for suitable c~, ~ E IR; 

(iii) C + - b. C + = # .  (CbC) + for a suitable # E R; 

(iv) I(Cb)+l > IC+I (l(bC)+l > It+l),  where equality holds i f  and only i f  

Supp(bb*) C C (resp. Supp(b*b) C C).  

Proof: (i) Since c E Lc6 M RbC, (i) is an immediate  consequence from 

Proposi t ion  4.2. 

(ii) Denote  Cb = {bl = b, ..., bin} just  for convenience. We have to show tha t  

C +- b = # (~n__ 1 bi). Since the  vector space spanned by bi, 1 < i < m is invariant 
m 

under  left multiplication by the elements from C, C + • bi = ~ j = l  #ijbj ,  ~ij E ~. 

Set M :=  (# i j ) l< id<m.  Since (C+)  2 = ]C+I C+ ,  M 2 = ICI M.  It  follows from 
m par t  (i) t ha t  Y~i=t #/J = I C] for each 1 < j < m. The elements of matr ix  M 
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are non-negat ive  real numbers .  Moreover, Cb = {bl, ..., bm} implies #U ¢ 0 for 

all 1 _< j _< m. Hence, M is an indecomposable  mat r ix  with non-negat ive  real 

entries. By  the  Per ron-Froben ius  Theorem,  ]C] is a maximal  eigenvalue of M 

and the ICl-eigenspace is one-dimensional.  The  equali ty M 2 = I C I M  implies t ha t  

the columns of M are ]C]-eigenvectors of M.  Therefore,  they are propor t ional ,  

i.e., r a n k ( M )  = 1. But  the sum of the elements of every column is ]C], whence 

all columns of M are equal, i.e., pfl  . . . . .  #ira for each 1 < i < m. 

(iii) C + • b. C + = ~-]'-xcCbC p~x. We have to show tha t  all #x are equal to each 

other.  By  par t  (ii) of our claim 

C + - b - C  + = a ( C b ) + C  + = a  E a x ( x C ) + '  a , a ~ E R .  
xECb 

Therefore  #x = #~ if x and y lie at the same right C-coset .  Analogously, #~ = #y 

if x and y lie at  the same left C-coset.  Let now x, y C C b C  be two a rb i t ra ry  

elements.  Then  y E Supp(clxc2) for some cl,c2 E C. There  exists z E B such 

tha t  z E Supp(c lx )  and y E Supp(zc2).  Hence #~ = #y, as desired. 

(iv) I t  is enough to prove the claim only for right cosets. According to par t  (iii) 

of Propos i t ion  2.3 the coefficient/3 in (ii) is not greater  than  [b I. Hence ](bC)+I _~ 

IC+I.  I f #  = H ,  then,  by Proposi t ion  2.3, par t  (ii), we have Supp(b*b) C C. I 

Remark: The  la t ter  par t  of the Proposi t ion implies tha t  ICbC[ _~ IC[. 

For each element  b E B we denote by b//C the following expression: 

b#C = IC+l . (CbC) ÷ = IC+I d. 
dEObC 

THEOREM 4.9: Let C < B be n closed subset and bl = 1, b 2 , .  • • ,  bk be a complete 

set of representatives of C-double cosets. Then the vector space spanned by the 

elements bi//C, 1 < i < k is a standard feat GT-atgebra with a distinguished 

basis B / / C  = {bi//C I 1 < i < k}. The structure constants of this GT-algebra are 

given by the following formula: 

(6) = IC+l -' 

rECb~C,sCCb#C 

where t C C b k C  is an arbitrary element. 

Proo~ Since e c  = ] C + I - 1 C  + is an idempotent ,  the vector  space e c A e o  spanned 

by the  e lements  e c - b . e c ,  b E B is a suba lgebra  of A with the ident i ty e c  = b] / /C.  

By Propos i t ion  4.8 (iii), 

ec"  b . e c  = ~lc+1-2 (CbC)  + 
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for a suitable # E IR. By Proposition 4.7 (CbC) + = (Cb~C) + for a suitable 

1 < i < m. Therefore, the elements bi//C, 1 < i < k form a basis of the algebra 

ecAec. 
If ~/ijk are the structure constants of the algebra ecAec, then 

m 

b, / /c  . b j / / c  = ~ ~,,~ bk//C, 
k=l 

or, equivalently, 

m 

(Cb~C) + -  (CbjC)  + = IC+l ~ 7,jk (Cb~C) + • 
k = l  

An element t E CbkC appears in the left-hand side with the coefficient 

rECb~C,sECbjC 

Therefore, 

IC+l~,jk = ~ "~. 
rECb~C,sECbjC 

Thus an algebra AIIC with a distinguished basis BI/C satisfies the axioms 

T0,T1. Since ec* = ec ,  A//C is *-invariant. The equality (CbC)* = (Cb*C) 

shows that  (B//C)* = B/ /C.  Hence A//C satisfies also T2. 

In order to check T3 we compute ~/ijl. If (CbiC)* ¢ CbjC,  then 

(CbiC)* N CbjC -- 0 and (6) implies 7ijl = 0. If (CbiC)* = CbjC,  then 

7,j~=lc+l -~ ~ I~l=lc+l -~ ~ H--~j,, 
xECb~C xcCb~*C 

as desired. 

Thus we have shown that  (A//C, B//C)  is a real GT-algebra. To finish the 

proof we need to check that  it is standard. 

As we have seen before, 

I ( c b c ) + l  
~,,-1 --Ic+l -' ~ I~1- ~ -IbJ/cl. 

xECb~C 

But the map  bj/C ~-~ [bi//C[ is the restriction of the degree homomorphism of A 

onto (A//C,B//C), implying that  b~//C ,+ "~ii*l is a homomorphism. | 
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Remark: If A is a group algebra of a finite group B, then (A, B) is a real non- 

singular standard GT-algebra. C C B is a closed subset if and only if C is a 

subgroup of B. In this case (A//C, B//C) is a Hecke algebra H(C,  B). 

The algebra (A//C, B//C) will be called the  quo t i en t  of (A, B) by a closed 

subset C. It follows from the proof that o(C)o(B//C) = o(B). If (A,B) is a 

Bose-Mesner algebra of a homogeneous coherent configuration, then both o(C) 

and o(B//C) are rational integers [22], [20]. If (A,B) is an arbitrary integral 

standard GT-algebra, then o(B//C) may be not integral. 

If (A, B), (C, D) are two GT-algebras with the same ring of scalars R, then 

one can define their t enso r  p r o d u c t  (A ®R C, B ® D) where the distinguished 

b a s i s B ® D  is the set oftensors b ® d ,  b E B, d E D. It is easy to see that  

(A ®n C, B ® D) satisfies all the axioms TO T3. Moreover, if both (A, B) and 

(C,D) are standard then so is their tensor product. The same is true for real 

algebras. 

If (C, D) is standard, then (ANRC, BND) contains a subalgebra (A, B)~(C, D) 

spanned, as an R-module, by the following basis: 

B t D =  { 1 ® d i d  C D} U {b®D + IbE B , b ¢  1}. 

A direct check shows that an R-submodule spanned by the above basis is a 

subalgebra of (A @R C, B ® D) that satisfies all the axioms. In what follows we 

shall denote it by (A, B) ~ (C, D) and call it t he  w r e a t h  p r o d u c t  of (C, D) by 

(A, B). The dimension of (A I C, B ~ D) is always equal to dim(A) + dim(C) - 1. 

Both constructions described above are well known in the theory of homoge- 
neous coherent configurations and table algebras [4], [6], [20]. 

PROPOSITION 4.10: Let (A ~ C,B  ~ D) be the wreath product of two standard 
real algebras. Then: 

(i) D = { l®d [, d E D} < BID and the GT-algebra spanned by {l@d [, d c D} 

is isomorphic to ( C, D). 

(ii) For each b E B, D C Sb®D+. 
(iii) The quotient algebra 

((AtC)/ /D; (B ~ D)//D) 

is isomorphic to ( A, B). 

Proof: Part (i) follows directly from the definition of the wreath product, since 

(1 ® d) • (1 @ d') = 1 ® dd' for every pair d, d' e D. 
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(ii) For each d E D, ( 1 N d ) . ( D N D  +) = (b®D+)  . ( l ® d )  = M(DND+), 
hereby proving this part. 

(iii) Since xD = Dx for each x E B I D, 

D x D = x ' =  { ~  i f x =  l ® d ,  d c D ,  
x} i f x = b N D  +, b ¢ 1 .  

Thus we have dim(A) double cosets, each of them of the form b ® D. Now it 

is easy to check that the mapping 

1 
iD+l(b® D)+ ~ b 

is an isomorphism between GT-algebras 

((A~ C)//D; (B / D)//D) 

and (A, B). I I  

5. I n t e g r a l  s t a n d a r d  G T - a l g e b r a s  

A non-singular real GT-algebra is called in tegra l  if its structure constants /~abc 
and the degrees f(b) are integers. An integral commutative GT-algebra is merely 

a classical integral table algebra [9]. 
In this section we always assume that (A, B) is an integral standard GT- 

algebra. If d = dim(A), then we can number the elements of B in such a way 

that  the sequence of t h e  d e g r e e s  [bl[ = 1, [b:[, ..., [bd[ is not decreasing, i.e., 

Ibd <_ Ib~+ll. 
We start from the following simple claim: 

PROPOSITION 5.1: Let ( A, B) be an integral non-singular standard GT-algebra. 
Then: 

(i) Aabclcl -- 0 (rood lcm(lallbl)); 
(ii) I Supp(ab)[ _< gcd(lal, Ibl), in particular, I Supp(ab)l = 1 for relatively prime 

M and  Ibl. 

Proof: (i) By Proposition 2.2 

Aob~lcl = At.oh-Ibl = Acb'olal, 

and the claim follows. 
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(ii) For each c E Supp(ab), A~bclc[ ¢ 0. Together with the previous par t  of the 

claim this implies A~bc[Cl >_ lcm([a[, Ibl) for every c c Supp(ab). Therefore,  

[alibi - gcd(lal, Ibl). I 
I Supp(ab)l _< lcm(lal, Ibl) 

PROPOSITION 5.2: Let  a E B be a faithful element o f  an integral s tandard 

GT-algebra. Then  

Yp (p E 7~(B) ==~ p < lal). 

Proof: Assume the contrary, i.e., there exists a prime p E ~(B)  such tha t  

p > [a[. Define Bo = {b e B I p  /{Ibl}, B1 = {b E BIpl ib[}  - Clearly, B is a 

disjoint union of B0 and B1. Since a E B0 and p E rr(B), the above sets are 

non-empty.  By Proposi t ion 4.3 there exist b E B0 and c E BI  such tha t  Aa~b ¢ O. 

By Proposi t ion 5.1 

~cblbl -- 0(mod lcm(lal, [cl)) => Aacblbl = 0(mod Plal). 

On the other  hand, Aacb ___ lal < p. Therefore Ibl ~- 0(mod p), yielding a 

contradict ion.  I 

Remark:  For homogeneous coherent configurations this fact was proven in [18]. 

The  proof  given in [18] was reproduced in [12]. For integral s tandard  table 

algebras it was proven by H. Blau in [8]. Here we gave the proof tha t  appeared 

in [18]. 

Let a E B be an arb i t rary  element. We define a [°] = 1 and, for each natural  

l E N, we set 

all] = ~" a[l-1]a * if 1 is even, 
L a[t-1]a otherwise. 

Now we can define two functions on B: 

da(b) = min{n I b E Supp(an)};  Oa(b) = min{n [b E Supp(a[n])}. 

It is clear tha t  a = a* implies 0a = da. 

In the case, when V ~ z  (b ~ Supp(a'~)) (respectively V~Ezb ¢ Supp(a[~])) we 

shall write da(b) = c~ (resp. O~(b) = oc). We shall say tha t  an element a E B is 

s t r o n g l y  f a i t h f u l  if 0~(x) ¢ cx~ for all x E B. It is easy to see tha t  each strongly 

faithful element is also faithful. 
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PROPOSITION 5.3: An  demen t  a • B is strongly faithful i f  it satisfies at least 

one of  the following conditions: 

(i) a is faithful and a = a* ; 

(ii) the closed subset generated by Supp(aa*) coincides with B .  

Proof: Straightforward. 

PROPOSITION 5.4: I f  On(b) = l >_ 2, then there exists c • B such that: 

(i) Oa(C) < l -  1, 

(ii) b • Supp(c5) and I Supp(c5)[ _> 2, 
where 5 = a* i f  I is even and 5 = a otherwise. 

Proo~ By definition, b • Supp(a[q) = Supp(a[Z-1])5. Therefore, there exists 

c • Supp(a [l-1]) such that b • Supp(c~). Clearly, Oh(c) <_ l - 1. 

Since c • Supp(a[Z-1]), there exists d • Supp(a [z-2]) such that c • Supp(d&*), 

or, equivalently, d • Supp(ch). The elements d and b are different, because of 

Oh(b) = l, Oh(d) _< l - 2. Therefore, {b, d} C Supp(c5), as desired. | 

It is easy to see that O~(c) exists for each c • B if Supp(aa*) generates B. 

The claim below was first proved by H. Blau in [8] in the case of a = a*. 

PROPOSITION 5.5: Assume that b2 is strongly faithful. I f  Ib21 = p, where p is 

prime, then p2 ](ibjl for all 1 <_ j < d. 

Proo~ Assume that C = {c • BJp2JJcl} # O. Take c • C with the minimal 
value l := Ob: (c). Clearly I > 2. By Proposition 5.4 there exists f • B such that  

052 ( f )  <_ l - l ,  I Supp(fb~2)l -> 2 and c • Supp(fb~2) (here ^ has the same meaning as 

in the previous statement). By Proposition 5.1 Afg2Jc I - 0(rood lcm(Ib21, If D). 

Combining this with Icl - 0(mod p2) we obtain 

~ c l c l  - 0(mod lcm(VI,p2)),  

implying Afi,2c H >__ lcm(p 2, Ifl). 
Since Ob2(f) <_ 1 -- 1, f • C, and therefore p2 Xlfl, whence lcm(Ifl,p 2) > Plfl .  

Thus Af$2Jc I >__ Plfl .  

On the other hand, AI$2c H < Ib211fl = Plfl .  Therefore, b2f = Af$2~c and 

Supp(b2f) = {c}. This is a contradiction. | 

PROPOSITION 5.6: I f  b2 is a strongly faithful element orB,  then 

Ibi] < 1 6 2 1 - 1  
Ibi-ll - 
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holds for each 3 < i < d. 

Proof." Among all b E B tha t  satisfy the inequality [hi > [bi_l[ we choose an 

element c with a minimal value of Ob~ (C). By Proposi t ion 5.4 there exists f E B 

such tha t  Ob2 ( f )  < Oh2 (c), c E Supp(/b'2) and there is some cl ¢ c in Supp(fb~2). 

Clearly, Ifl-< [b~-ll. So 

Ifllb~21 ~ AfG:[c I + Afg:,[Cl[ ~ Icl + lfl, 

as Afg2c~[Cl I :- 0(rood [f[)- It follows that  lel <_ ( Iba l -  1)Ill < (Ib21- 1)lb~-~l. 
| 

PROPOSITION 5.7: Let (A, B) be an integral s tandard GT-algebra. As sume  that 

there exist bi,bj E B such that [bi[ > 1,gcd([bi[,[bjD = 1. B y  Proposit ion 5.1, 

Supp(bibj)  = {bk} for a suitable bk E B.  Assume  that [bk[ = [bj[. Then: 

(i) Supp(bi*bi) C Lbj. 
(ii) Ifbibi*bi = bi*b 2, then Bb, ¢ B.  

(iii) I f  [bj[ = [bd[, then Bb~ ¢ B.  

Proof." (i) Follows directly from Proposi t ion 4.4. 

(ii) Set V := {c E B[ bic = [bdf for somef  E B and Icl -- [bjl}. Clearly V ¢ 0. 

We claim tha t  Supp(biV) = V. Indeed, if f E Supp(biV),  then there exists 

c E V such tha t  hie = [bdf. Since [fl = I~l ; [bj[, we obtain tha t  gcd(lbd, Ifl) = 

1, from which it follows tha t  bi f  = # f ' ,  # <_ [bd, f '  E B. We have 

Now Proposi t ion 4.4 implies # = [bi[. 

On the other  hand, bi*bif = #b~*f', implying bi*f ~ = [bi[2/# f .  Hence [bi[2/# 

_< [bi[ and, consequently, p = [b~[. 

Thus  f E V and Supp(biV) -- V. This immediately implies bi E L v .  Since 

V ~ B,  L v  ~ B,  implying part  (ii) of our claim. 

(iii) We set V :-- {c E B[ [c[ -- [by[}. As before, it is enough to show tha t  

Supp(biV) -- V. Take an arbi t rary  c E V. Then  gcd([c[, [biD = 1 implies tha t  

bic = / z f  for some f E B.  Taking into account tha t  If[ <_ [bd[ ---- [bj[ -- [c[ and 

/z _< [b~ I we obtain If[ = lbdl. Thus  Supp(b~V) -- V,  as desired. | 

Remark:  For related results on finite groups see [17]. 
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PROPOSITION 5.8: Let  (A, B)  be a standard integral GT-algebra. Assume that  

B contains a faithful d e m e n t  b E B with Ibl = 2 and Ix[ _> 2 for all x E B ,  x ¢ 1. 

Then  there exists ~ naturM n such that  A C ZC2n+l with a distinguished basis 

B = {g~ + g-~ I i = 1 , . . . ,  n} where g is a generator o f  C2n+1. 

Proof." Let bl = I, b2 = b , . . . ,  bm be the ordering of the elements of B according 

to their  degrees (i.e., Ibil < Ibi+ll). At first we show that  Supp(bb*) generates B. 

Assume tha t  it is not true. Then  bb* = 2 . 1 + c  for s o m e c  E B,  Icl = 2, 

c = c* and Igcl ¢ Igl. By induction on Igl, gc satisfies the conclusion of 

Proposi t ion 5.8. Therefore,  there exists some d E B~ with bb* = 2 • 1 + c = dd*. 

T h e n  (d*b,d*b) = (bb*,dd*) = 6. Since b ¢ d, either d*b E B or d*b = u + v for 

suitable u, v E B,  lul = Ivl = 2 (u, v may be equal). Therefore  (d'b, d'b) E {4, 8}, 

a contradict ion.  

Thus  we may assume tha t  Supp(bb*) generates B. By Proposi t ion 5.6, Ibd _< 

Ibi_ll . Therefore  Ibd = 2 for each i = 2 , . . .  ,m.  

Since all non-trivial  elements of B are of degree 2, for each x E B # there  

exists a unique f ( x )  E B # with the proper ty  xx* = 2 . 1  + f ( x ) .  We claim 

tha t  f is injective. Indeed, if f ( x )  = f ( y ) ,  then (xx* ,yy*)  = 6, implying a 

contradict ion.  Thus,  f is injective and therefore surjective (we remind the reader  

tha t  B is finite). Since I ( x )*  = f ( x ) ,  each element x E B is real, whence A is 

commutat ive .  
All integral table algebras with faithful element of degree 2 were classified in 

[9] provided tha t  either the given element is real or there is no non-identi ty linear 

element.  Using this classification one can easily complete the proof. I 

Proo f  o f  Theorem 1.3: (i) If Ib2i = 1, then b2 is linear and therefore L(B) ~ {1}. 

Since L(B) < B,  L(B) = B.  Thus  A is a group algebra of the group B.  By 

pr imit ivi ty  of A, B has no subgroup. Therefore,  B is of prime order. 

(ii) is a direct consequence of Proposi t ion 5.2. 

(iii) Assume tha t  gcd(ibiI, IbjI) = 1 for some 1 < i , j .  Then,  by Proposi t ion 5.1 

par t  (i), ISupp(bibj)[ = 1, whence bibj = ttbk,# E Z for a suitable bk E B .  

W L O G  we may assume tha t  ]b d _< [bj]. If ]bjl < Ibk], then we are done. 

Assume now tha t  Ibd] = ]bkl. Since ]bi] > Ib2], ]bi] > 1, implying tha t  

Supp(bibi*) ¢ {1}. 

B is primitive,  hence [ ( B )  = {1} = Lbj. But by Proposi t ion 5.7(i), {1} C 

Supp(bi*b~) C Lbj, which is a contradiction. 

(iv) follows from Proposi t ion 5.5. 

(v) follows from Proposi t ion 5.6. 
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(vi) follows f rom par t  (iii) of this claim. 

(vii) follows direct ly from Proposi t ion 5.8. | 

59 
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