ISRAEL JOURNAL OF MATHEMATICS 114 (1999), 29-60

GENERALIZED TABLE ALGEBRAS

BY
Z. ARAD, E. FISMAN® AND M. MUZYCHUK**

Department of Mathematics & Computer Science
Bar-Ilan University, 52900 Ramat-Gan, Israel
e-mail: aradtzvi@macs.biu.ac.il, fisman@macs.biu.ac.il, muzychuk@macs.biv.ac.il

ABSTRACT

A table algebra was defined in [1] in order to consider in a uniform way
the common properties of conjugacy classes and irreducible characters.
Non-commutative table algebras were introduced in [5]. They generalize
properties of such well-known objects as coherent and Hecke algebras.
Here we extend the main definition of a non-commutative table algebra
by letting the ground field be an integral domain. We call these algebras
generalized table algebras (GT-algebras, in brief). It is worth mention-
ing that this class of algebras includes generic Hecke-Iwahori algebras of
finite Coxeter groups. We develop the general theory for this type of
algebras which includes their representation theory and theory of closed
subsets. We also study the properties of primitive integral table algebras.

1. Introduction

Let R be an integral domain. An R-algebra A with a distinguished basis B
is called a generalized table algebra (briefly, GT-algebra) if it satisfies the
following axioms:

TO. A is a free left R-module with a basis B and B is finite.

T1. A is an R-algebra with unit 1, and 1 € B.
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T2. There exists an antiautomorphism a — a*,a € A, such that (a*)* = a
holds for all a € 4 and B* = B.
Let Agpe € R be the structure constants of A in basis B, i.e.,

ab= Z AabeC,  a,b € B.
ceB

T3. For each a,b € B, Agp1 = Apa1, and Agp1 = 0 if a # b*.

In what follows, the notation (A,B) will mean a GT-algebra A with the
distinguished basis B.

Following [7] we call a basis B standard if the map b — Ap+1 extends linearly
to a homomorphism of R-algebras. We also say that (4, B) is standard if B is
standard.

A GT-algebra will be called real if R = R and Mg > 0 for each triple
a,b,c e B.

Let t: A — R be the linear function defined by (3 ,cp Zsb) = 71. As a direct
consequence of T3, we obtain that t(zy) = t(yz),z,y € A.

We shall say that a basis B (an algebra A) is non-singular if Ay # 0
for each b € B. In this case A becomes a Frobenius algebra, since t(zy) is a
non-degenerate associative form on A.

In what follows we use the notation |z|,z = ) ,cgzsb for the sum
> bep ToAspe1- In particular, [b] = Appe1 for each b € B. If C C B, then IC|
will stand for the sum )_ .l

We define a bilinear form (, ) on A by setting

(z,y) = t(zy").

According to T3, (, ) is a symmetric bilinear form, values of which may be
computed by the following formula:

(1) (Z zbb, Y ybb> = Ty dooer-

beB beB beB
For any z = ), .g%sb € A, we write Supp(z) for {b € B | z, # 0}. If
E,D C B, then we set ED = UceE,deD Supp(cd). We shall write aC instead of
{a}C, C C B. For every C C B we write C* for the following sum, }_ ~c€ A.
Let (A,B) and (A’,B’) be two GT-algebras. Following [7] we say that a
homomorphism ¢ € Hompg(A4, A’} is a GT-homomorphism, if

1t To avoid confusion with complex conjugation we use * instead of the
traditional 7, [1].
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HL. o(b*) = ¢(b)*,b € B;
H2. ¢ is a homomorphism of R-algebras;
H3. For each b€ B there exist ' € B’ and r, € R such that r, # 0 and
p(b) = rpb'.
If (A, B) is real, then we require, in addition, r, > 0 for each b € B.

If ¢ is a bijection, then we say that (4, B) and (4’, B’} are GT-isomorphic (or
(A’,B') is a rescaling of (4,B)). It should be mentioned that in this case all
factors ry, b € B, are invertible elements of R.

A subset D C B is said to be closed (or a table) subset if the R-submodule
{¢)cep is a GT-algebra with distinguished basis D.

In what follows the notation D < B will mean that D is a closed subset of
B. A routine check shows that the intersection of two closed subsets is a closed
subset as well. This justifies the following definition. Given b € B, we define
B as the minimal closed subset containing b. An element b € B will be called
faithful (see [1]) if B, = B. We say that (A, B) is primitive if all non-identity
elements of B are faithful. An element b € B is called real (or symmetric), if
b* =b, [1].

Examples: Let (X;G) be a homogeneous coherent configuration, [13] (an
association scheme in [6]). Then its Bose-Mesner algebra is an example of a
standard GT-algebra over Z. All structure constants of the Bose-Mesner algebra
are non-negative, so it is also a real algebra (one can use the equivalent notion
of cell algebras introduced in [20]).

Let (G; X) be a transitive permutation group. Then it acts naturally on the
set X2. The orbits of this action, called 2-orbits in [12] (orbitals in [11]), form
a homogeneous coherent configuration. Its Bose-Mesner algebra coincides with
the centralizer ring of the corresponding permutation representation of G. As a
GT-algebra it is isomorphic to the Hecke algebra Hz(G; H), where H = G, is a
point stabilizer.

If G is a semidirect product of H by Inn(H) which acts on the group H by the
following rule:

2@ =2%h, pem(H), =z,heH,

then the correponding Bose-Mesner algebra is isomorphic (as a standard GT-
algebra) to the centre of the group algebra ZH where the distiguished basis is
formed by the characteristic functions of the conjugacy classes of H.

The ring of group characters with the irreducible ones as a distinguished basis
is another example of a GT-algebra. The distinguished basis is not standard
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unless the underlying group is abelian, but it always may be rescaled into the
standard one. We refer the reader to [1] for more details.

All previous examples were algebras over Z. The generic Hecke-Iwahori
algebras of finite Coxeter groups (see [14] for the details) give examples of
standard GT-algebras defined over the ring of integral polynomials.

The paper is organized as follows. Section 2 contains basic facts about GT-
algebras.

Section 3 deals with representation theory of GT-algebras. The theory of feasi-
ble traces developed by D. G. Higman is applied in order to obtain orthogonality
relations for irreducible characters. In this section we also define the Frame
number of a GT-algebra which is a direct generalization of the well-known nu-
merical invariant of the Bose-Mesner algebra of a homogeneous coherent config-
uration. We show that the Frame number of a GT-algebra always belongs to the
ring that contains the structure constants of the GT-algebra.

As a consequence of the developed theory we obtain the following theorems.

THEOREM 1.1: Let (A,B) be the Bose-Mesner algebra (over Z) of a com-
mutative association scheme (X;G) with d classes. Let vy = 1,vy,...,vq4 and
mg = 1,my,...,my be its valencies and covalencies. Then F, ®z A is semisimple
iff v Y
d+1 V1.0 Ud
pAXIT my...-mg

THEOREM 1.2: Let (X;G) be a homogeneous coherent configuration on a prime
number of points. Assume that there exists k such that |g| = k for each g €
G,g# 1. Thent

(i) The Bose-Mesner algebra of (X;G) is commutative (ie., (X;G) is an

association scheme in the sense of [6]).

(ii) All non-trivial covalencies of (X;G) are equal to k.

Section 4 is devoted to non-singular real GT-algebras. For real GT-algebras we
show that every distinguished basis may be rescaled into a standard one which
is unique. We also extend the theory of table subsets and generalize to the
non-commutative case well-known properties of table algebras.

Integral GT-algebras with a standard distinguished basis are studied in Section
5. We study the properties of primitive integral standard GT-algebras. The
main result of this section generalizes the well-known properties of primitive
permutation groups (see [19]).

1 Here |g| is the valency of a relation g € G.
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THEOREM 1.3: Let (A,B) be an integral standard GT—aIgebra.T Assume that
the elements of B are numbered in non-decreasing order of their degrees: |b;| =
1< |ba| <--- < byl Let #(B) = U:jg 7{|8:]), where w{m) denotes the set of all
prime divisors of m.
If (A, B) is primitive, then:
) If |ba] = 1, then (A, B) is a group algebra of a group of prime order.
(ii) VYpen(m) (p < |bal)-
(iii) If |b2] > 1 and ged(|bil, 1b;]) = 1 for some 1 < i, j, then there exists 1 < k
such that |bx] | |bi||b;| and |bk| > max(|b;l, |6,]).
(iv) If |by| is prime, then |by|* f1b;| for each j > 1.
(v) If |by| > 1, then |b;| < |b;i—1}(|b2] — 1) for each 2 < .
(vi) If |ba| > 1, then ged(|bs|, |ba]) # 1 for each 2 < i.
(vil) If |bo| = 2, then |b;| = 2 for all 1 < i < d and (A, B) is a subalgebra of the
group algebra ZC, with B = {1} U {¢* + g *}o<i<p/2 (here Cp is a cyclic
group of prime order generated by g € Cp).

2. Basic properties
We start with the following claim:

PROPOSITION 2.1: Let (A,B) be a GT-algebra. Then for arbitrary z,y,z € A
the following equalities hold:

(i) (z,yz) = (zz",y),

(i) (zy,2) = (y, 2" 2).

Proof: (i) (z,yz) = t{xz*y*) = (z2*,y).
(ii) (zy,2) = t(zyz") = t(yz"z) = (y,2%2). W

PROPOSITION 2.2: Let {A, B} be a GT-algebra. Then the following hold for each
a,b,e,d € B:
(1) EteB AabtAted = Zteg AatdAbet;
(i) |1] =1 and [b] = |b*(;
(111) abc = )‘b‘a *evy
(iv) Aabelel = Acrabs[b] = Acv-alal, and Appec = Appece;
)
)

(V ZzEB abzlzl Zng a* az)\bb'zll'l
(vi) if (A, B) is non-singular, then Agpe = Agbra = Abarar = Abrarar-

Proof: (i) is a direct consequence of the associative law.

t Integral GT-algebras and their degrees are defined in Section 5.
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(i) follows from T3 and the definition of |b].
(iif) is a consequence of the fact that z — z* is an antiautomorphism.
(iv) By the definition of the bilinear form, (ab,c) = Agpc|c|- By Proposition 2.1

(ab,c) = (a,cb*) = (cb", @) = Acp+alal,
(ab,c) = (b,a*c) = (a*c,b) = Agxcn|b]-

Taking into account that Ag+ep = Acrqp- and |b] = [b*|, we obtain Ag=e|b] =
Nevape |0

The equality App+c = Appec~ follows from the fact that (bb*)* = bb*.

(v) As follows from (1),

(aba ab) = Z Agbclcl'
ceEB
On the other hand, by Proposition 2.1
(ab,ab) = (bb*,a*a) = Z AbbrcAa=aclels
ceEB

as desired.
(vi) is a direct consequence of (iv). |

ProproOSITION 2.3: Let (A,B) be a standard non-singular GT-algebra. Then:

(1) VabeB 2 peB Aash = 2gep Azab = |al-
(ii) Vees aBt = Bta = [a|Bt.
(iii) If(A,B) is real, then for each C C B and a,b € B we have ) . Aot < lal.

Proof: (i) Multiplying the sum > g Aazb by |b] we obtain
> " Nazplbl =D Moozl
zeB z€B

Since the map = — || is a homomorphism, the right hand side is equal to
la]|6*] = |al|b]. Cancelling by |b] we obtain g Aazb = |al-
In order to prove the second equality we apply * to the first one:
Z Azab = Z Agrz=br = |a*| = Ia’|
z€EB z€B

(i) is a direct consequence of (i).
‘The last part of our claim is a direct consequence of (i). ]
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3. The representation theory of non-singular GT-algebras

In this section we assume that R is a field and B is non-singular.

A linear function f: A — R is called a feasible trace [13] if it satisfies the
identity f(zy) = f(yz), =,y € A. According to the axioms of GT-algebras the
function ¢, defined in the introduction, is a feasible trace. So we may apply
the representation theory of algebras with feasible traces which was created by
D. G. Higman in [13]. Although this theory was developed under the assumption
that char(R) = 0, it remains valid if we require separability of the extension R/R,
where R is the algebraic closure of R. This condition always holds if char(R) = 0
or R is finite.

For every a € A we define a B x B matrix M, as the matrix of the linear
operator £ — az, £ € A in the basis B. The map a — M, is the left regular
representation of A. The character of this representation will be denoted by
reg( ). Clearly, reg() is a feasible trace on A.

It is easy to see that (Mgy)pc = Aabe and reg(b) = Y g Abzz, b € B. Using this
character one can define the Killing form K (a,b) = reg(ab). By D we denote the
diagonal matrix defined as follows: Dy, = |b], b € B.

PROPOSITION 3.1: (i) My« = DMT D™ for each a € B.
(i) reg(a) = reg(a*) for each a € B.

Proof: (i) We just compute the (b, c)-entries of both sides.

(Ma+)be = Aarbe = Acra=t bllcl ™ = 1blle] ™ Xaco
= lolle} " (MT Yoo = (DMT DY)

(We used Propositon 2.2, which says that Agep|b] = Ap-act|c*| = Aavbelc], implying
ib“cl Xach = Aa=be-)
(ii) is a direct consequence of (i). ]

The following result is well-known.

THEOREM 3.2: Let A be an associative algebra over the field R. If its Killing
form K is non-degenerate, then A is separable.

In what follows we set
A=) ?b*
ses Lol

ProprosiTION 3.3: Let f: A — R be a feasible trace. Then:
(i) f*(z):= f(z*) is a feasible trace;
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.. i F
(i) 27 = Tpen Jopd € Z(4).

Proof: Part (i) is trivial.
(ii) Take an arbitrary a € B and consider the commutator:

f* ) f b*
zfv Z ‘b* Z Aabe — )\bac)
beB b,c€B
By Proposition 2.2
)\abc|‘:| = /\c'ab‘lb*‘a )‘baC‘d = )‘C‘ba'la*‘ = )‘GC’b‘lb*L
Therefore

1 1
W(/\abc - )\bac) = H(/\c‘ab‘ - /\ac*b‘)1

implying that

zf,a] Z Z c* ab‘ - Aac‘b*f(b*))

CGB bEB
=3 Ui - o).
C€B
The latter equality shows that z; belongs to the centre Z(A). ]

PROPOSITION 3.4: The following properties hold:
. reg(b*
i) A=F,ep 5.
(ii) A € Z(A).
(iil) Let My, Ma be the matrices of K and A in the basis B. Then
Mg -T-D7! = Ma,

where T is the matrix of the permutation b b* in the basis B.

Proof: (i)

IR DD I

bes i

Abebe -

:Z(Z—II}T{L> Z“(Zz\*b.b,)c_zreglc'c)c'
ceB \beB Z 2

Part (ii) follows immediately from Proposition 3.3, since reg is a feasible trace.
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(iii) Part (i) of our claim implies that

My = Z reg(c )Mc«

o

Therefore

(MA)ab = Z %/\cab
cEB

By Proposition 2.2, Acab|b| = Apeca~fa] = Aaprcr|c|, whence

reg(c*) 1 x
(MA)ab = Z T)\abtct = mK(a,b ) .
ceB

As a direct consequence we obtain the following corollary:

COROLLARY 3.5: Assume that (A,B) is a GT-algebra with non-singular B. If
A=) B % is invertible, then A is semisimple.

3.1 ORTHOGONALITY RELATIONS FOR SEMISIMPLE GT-ALGEBRAS. In this
subsection we assume that (A, B) is semisimple and B is non-singular. Let R be
the algebraic closure of R and Az = R®g A. Here and later on we shall assume
that the extension R/R is separable. If char(R) = 0 or R is finite, then this condi-
tion is always satisfied. In particular, the Bose-Mesner algebra of a homogeneous
coherent configuration, defined over Q, satisfies the condition char(R) = 0, and,
therefore, we may apply to these algebras all the results of this section.

Let p',...,p" be a complete set of pairwise non-isomorphic irreducible repre-
sentations of Ag and x; = tr(p’) be their characters. Then Ap = G)z; M, (R),
where m; = x;(1). Clearly > ;_] m? = |B|.

According to [13],t = ZZZ 2;Xi, where z; € R are feasible multiplicities. Since
t(zy) is a non-degenerate bilinear form, all z;’s are non-zeroes.

Denote by p%(b), 1 < j,k < my, 1 < i <7 the (j, k)-entry of the m; x m;-
matrix p*(b), b € B. Let A be the set of all triples (7,7,k), 1 <i<r,1 < j < my,
1<k<m,.

For an arbitrary triple A = (7, j, k) € A we set:

my i =m;, pa(b) = pj-k(b); M= (4,k,5);  2x =z
{Here we use the notation of [13].)

If o € Gal(R/R) and p*: A — M,,(R) is an irreducible representation, then
the map p'": A — M,,(R) defined by
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is an irreducible representation of Az as well. Thus Gal(R/R) acts as a

permutation group on the set {p,...,p"} of the irreducible representation of
A.

THEOREM 3.6 (Section 5 of [13])):
() Toen foab)ou) = Sruzil, A A ((5.3), [13);
(ii) ZAEA z>\p,\(b)p/\: (C) = Ope- CI,b,C €eB ((5°5)7 {13]);
(i) Toen a6 () = 0525, i = 1,...,r ((5.4), (13]);

(iv) the elements

Xs—zszxs s=1,...,7 ((5.7), [13])

beB
are the minimal central idempotents of Ag.

Let U be a A x B-matrix entries of which are defined as follows:
Uxp = pa(b).

Denote by Z the A x A diagonal matrix with the entries Z) » = z) and by S the
A x A-matrix of the permutation A +— A%

LEMMA 3.7: Let (A,B) be a semisimple GT-algebra with a non-singular distin-
guished basis B. Assume that there exists a UFDY Ry C R such that R is a field
of fractions of Ry and Aape € Ry for each a,b,c € B. Then:
(i) for each a,b € B, (UT-S-U)qap = 7(ab), where 7(z) = ZZI xi(z),z € Ag;
(ii) 7(ab) € Rq for each a,b € B;
(iit)
(2) H 1] - H % € Ry;

beB /\EA

(iv) if (A, B) is standard, then |B+|_ F(A,B) € Ry.

Proof: (i)

i=rj i k=m;

U5 D=3 x@on®)=3. 3 3 sixla)pis ) th(a”) (ab).

AEA i=1 j=1 k=1

ii) Since ab = AabcC, Aabe € Rp, it is sufficient to show that 7(a) € Ry
ceB
for each a € B.

1+ UFD is an abbreviation of a “unique factorization domain”.
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For each a € B, x;(a) belongs to the integral closure Ry of Ry in R. Therefore,
T(a) € Ro.
On the other hand, for each o € Gal(R/R) we have

i=r

ma)” =Y (x:(a))” =) xie(a) = Y _ xi(a) = 7(a).

i=1 =1 i=1

Therefore, 7(a) € R. Since Ry is a UFD, Ry N R = Ry implying 7(a) € Ry.
(iil) According to Theorem 3.6, part (i),

U-T-DWT=21.6

Therefore,

det(U)? det(T)) H b7 = det(S) H PN

beB AEA

Since S and T are permutation matrices,
det(U)? = £ H zt H |b].
A€A beB

On the other hand,
det(U)? det(S) = det(7(ab))qpeB € Ro.

Therefore,

F(A,B) =[] B ]] z* € Ro.

beB AEA

(iv) Consider the following basis of A:

oo [BY ifb=1,
T 16 ifbeBN{1}.

The determinant of the transition matrix from the basis B to the above one is
equal to 1. Therefore,

det(T(ab))aper = det(T{€qes))a beB-

Since b+ |b| is an irreducible representation, it coincides with some p*. Without
loss of generality we may assume that p'(b) = |b| ,b € B. By Proposition 2.3 (ii),
bB* = B*b = |p|B*. Therefore,

_ [lr(es),  b#1,
T(ever) = { |B+I’T1(61), b=1.
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By Theorem 3.6 (iii)

Z X1 —0,

beB
whence Y, .p xi(b) = 0 for each i > 1. Therefore, 7(B*) = |[B*|, whence
7(ere1) = |B¥|r(e1) = [B*|°. Thus the matrix of the form 7 in the basis

{es}peB has the following form:
IBH* ... jblIB*

bl B

where * denotes the elements 7(epe;),a,b € B ~\{1}. Since 7(epe,) € Ry for all
a,b € B~{1}, the determinant of the above matrix is equal to |B|2r,r € Rp.
|

Remark: If (A,B) is the Bose-Mesner algebra (over C) of a homogeneous
coherent configuration (X;G), then

£
| X’

Z; =

where f; is the multiplicity of the representation p; in the decomposition of the
standard module CX (see [22], [20]).Jf In this case

b
F(a,B) = xpdleall
Hz—l fz
where d = dim(A) and |b] is the valency of b € B. The number
ld 2 HbEB Ibl
Lz
is known as the Frame quotient of the configuration [21]. For this reason we shall

call F(A,B) the Frame number of the GT-algebra (4,B). It was shown in
[20] that the Frame quotient of an arbitrary homogeneous coherent configuration

|X

is a rational integer. Thus part (iii) of the above Lemma is a direct generalization
of this fact.

1 The multiplicities f; are called covalencies if A is commutative.
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LemMa 3.8: Let (A, B) be a semisimple algebra with non-singular distinguished
basis. Denote m; := x;(1),4=1,...,r. Then:
A Z’L T Ln_LJ

1,1z,
(n)H‘ (a-m )=0

(iii) The charactemstm polynomial of Ma is equal to Hl_l(z — Duymy,

2 =
(iv) det(M) iHbeB|b| Hz 1 (

)

Proof: (i) Since reg: A — R is the regular character of a semisimple algebra,

reg = ZZI m;x;. Therefore

=

reg(b m;xi (b*) m;
IR TS 3 phi LIS SV

beB beB i=1 =1

(ii) It follows from the previous part that
(A - %1)% =0.

Since J,,, 1 < ¢ < r are primitive central idempotents of A,

=7

H(A_ﬂ]L)JXj:O foreach1 <j<rn
Zi

i=1

To finish the proof it is enough to note that 1 = Z:Z i

(iii) follows easily from (i) and the fact that m? is the rank of J,, in the left
regular representation.

(iv) By Proposition 3.4 det(T) det(Mg) = det(D) det(Ma), whence det(Mk)
= +[,cp |l det(Ma). By the previous part

2
i

det(Ma) = ﬁ:I_TI <7:—)m .oon

Proof of Theorem 1.2: Let A be the Bose—Mesner Z-algebra of G and B =
{Bg | b € G} be its distinguished basis.

Let mg = 1, my,...,m, be the degrees of the irreducible complex representa-
tions of A and f; be the multiplicity of the i-th irreducible representation in the
decomposition of the standard module CX. Denote d = dim(A). It follows from
Proposition 3.4 that the eigenvalues of the matrix kMa are algebraic integers.
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On the other hand, the remark after Lemma 3.7 and Lemma 3.8 imply that the

eigenvalues of Mp are m—]}ﬁ, i=1,...,r. Therefore
| X
I
fi
But | X| is prime and m; f; < |X|, k < |X|. Therefore kT":L € Z, or, equivalently,
7 k
—f~— =—, weN i=1...,n
m; U;

Now we can write
r T k
}: Z 2
IX}—lZ mifi——- —m;.
¢ — U
=1 i=1

On the other hand,
IX| - 1=k(d-1)=Y km!.
=1

Comparing both equalities we obtain u; = 1foreachi =1,...,r. Thus f; = m;k,
i=1,...,r. Now the Frame number of the algebra (A, B) is equal to

1
F(A,B) = | X |4 ——rs.
=1

Since | X| is prime and strictly greater than m;, the above number may be an
integer only in one case: m; =1 for every ¢ = 1,...,7. |

LEMMA 3.9: Let (A, B) be the Bose—-Mesner algebra of a homogeneous coherent
configuration of degree n with d classes. Denote by G a (d + 1) x (d + 1)-matrix
whose entries are defined by the formula

Gap = Z Aabrc (Z Acdd) .

ceB decB
Then

T m2
det (zG — nD) = F(A,B) H (mez — fi)™,
i=1
where m; is the degree of the i-th irreducible representation and f; is its
multiplicity in the decomposition of the standard module.

Proof: By definition G, = K(a,b*), or, equivalently, G = MgT. By
Proposition 3.4 (ii), G = MaD and we have

det(zD — G) = det(zI — Ma)det(D) = det(D) ﬁ (x - ln—';)m .

i=1
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1

Now by substituting =" instead of x we obtain

det(D — 2G) = det(D) H (1 - ﬂx) R

z
i=1 '

det(zG — D) = det(D) fI (@x B 1) m?

i=1

—aet(D) [ (%)m I (m - ;T)m

i=1

T T TT],2
= F(A,B) Hmzn? H (:c — %)
i=1 t

i=1

After substitution of z; = f;/n and z/n instead of x we obtain

2
T A m? Tlz fi 1\™
det (zG —nD) = F(A,B) ngn? (m - —fl—) ,
i=1
as desired. |
Theorem 1.1 is a direct consequence of the following claim.

THEOREM 3.10: Let (A, B) be a commutative semisimmple GT-algebra with non-
singular B defined over the field R. Assume that R contains a UFD Ry such that
Aabe € Ry holds for all a,b,c € Ry. Assume that R is a field of fractions of Ry.
Denote by RgB the Ry-algebra generated by B.

Let I be a maximal ideal of Ry and F' = Ry/I. Assume, in addition, that the
algebraic closure F is a separable extension of F. Then the F-algebra Ap :=
(RoB) / (IB) is semisimple if and only if the Frame number (A, B) is non-zero
modulo 1.

Proof: Since F'/F is a separable extension, a finite dimensional commutative
F-algebra is semisimple if and only if its Killing form is non-degenerate. The
determinant of the Killing form of Ar in the basis B is the residue class of the
determinant of the Killing form of RyB in the basis B. By Lemma 3.8 the
determinant of the Killing form is equal to

iH|b|H’:—:.

beEB  X€A
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Since A is commutative, my = 1, for each A € A. But in this case the above
product is equal to F(A,B) up to a sign. |

3.2 THE REPRESENTATIONS OF REAL GT-ALGEBRAS. In this subsection we
assume that (A, B) is a non-singular real GT-algebra, i.e.,

Vab,ceB  Aabe €ER,  Agpe >0 and  Appry > 0.

Since the extension C/R is separable we may apply the results of the previ-
ous subsection for studying real GT-algebras. In what follows we shall use the
following notation:

R ={reRlr>0}, R°°={reR/r>0}

THEOREM 3.11: A is a semisimple algebra.

Proof: Let J be the Jacobson radical of A. Since * is an antiautomorphism of
A, J=J.

Assume that J # {0}. J is nilpotent, hence there exists a minimal m € N,
m > 2 such that J™ = {0}. Set I = J™~1. By the choice of m, I # {0} and
I? = {0}. Since J* = J, I* =I. Take anonzeroz € I, =3, 5 Tob, Ty € R.
Then z* = ), g zsb* € I. Further, zz* € I> = {0}. On the other hand, the
coefficient of 1 in the product zz* is equal to ZbeB /\bquf > 0, a contradiction.
n

This claim implies that Ac = C ®g A is isomorphic to a direct product of full
matrix algebras

A‘C = EB Mmi (C)’
i=1
where m;, 1 < i < r are the degrees of the irreducible representations of Ac.
Computing the dimensions we obtain y '—7 m? = |B|.
An algebra homomorphism f: A — R is called a degree homomorphism if
f(b) > 0 holds for all b € B.

PROPOSITION 3.12: If there exists a degree homomorphism, then it is unique.

Proof: Let f,g be two degree homomorphisms, f # g. Then Theorem 3.6 (iii)
implies
10000 _ g
o
beB !
a contradiction. ]
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ProOPOSITION 3.13: For each a € B we have aB = B.

Proof: 'We have to show that for each ¢ € B there exists b € B with Ag # 0.
By Proposition 2.2 (v), (c*a,c*a) > |allc| > 0. Therefore Supp(c*a) # 0. Take
an arbitrary b € Supp{c*a). Then A.qp # 0, implying Agp-. # 0, as desired.
|

The proof of Theorem below is a direct generalization of the proof of Lemma,
2.5 of [1).

THEOREM 3.14: There exists a unique degree homomorphism f: A — C such
that f(b) = f(b*) holds for each b € B.

Proof: Consider the element B* =37, 5 b. Its matrix Mg+ in the left regular
representation is equal to the sum Mg+ = ), g M. By Proposition 3.13 all
entries of Mg+ are positive real numbers. By the Perron—Frobenius theorem there
exists a unique maximal eigenvalue, say d, of multiplicity 1. The corresponding
eigenvector z = ZbeB vpb has positive coordinates vy. It is easy to see that zb is
also an eigenvector of Mp+ with the same eigenvalue d. Therefore zb = f(b)z for
a suitable f(b) € C. Since all coefficients of z are positive reals, Supp(zb) = B
and f(b) € R>®. Thus there exists a function f: B — R>? such that z-b = f(b)z.
Now we can write

1) £(@)z = 2(ab) = 23" Mased) = (3 Aavef(0))2,

c€EB ceB

whence

F@F®) = Aasef(c),
ceB

proving that f is a homomorphism. Since f(b) > 0 for each b € B, f is a degree
homomorphism. To finish the proof it is sufficient to show that f(b) = f(b*)
holds for each b € B. Consider the map g: b — f(b*), b € B. Since * is
an antiautomorphism and f is a homomorphism into a commutative algebra,
g is also an algebra homomorphism. Since g(b) = f{b*}) > 0, g is a degree
homomorphism. By Proposition 3.12, g = f. |

Since every real GT-algebra has a degree homomorphism, one can always
rescale it into the standard GT-algebra. If f is the degree homomorphism of
(A,B), then the number o(B) = ", g f(b)/|b| is invariant under rescaling [1].
Following {1] we shall call it the order of (A, B).
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THEOREM 3.15: Let f be the degree homomorphism of a real non-singular
GT-algebra (A, B). Denote

OR

:W and BS:{bslbeB}

Then
(i) (A,B?®) is a standard real algebra isomorphic to (4, B).

(i) If (A,B’) is a standard real algebra obtained by a rescaling from (A, B),
then B’ = B®.

Proof: (i) Denote by X.,.., a®,b°,¢° € B® the structure constants of A in
the new basis B®. Since b* — f(b°) = f2(b)/|b] = A{sps-q is an algebra homo-
morphism, (A, B?®) is a standard real GT-algebra.

(ii) Since B’ is a rescaling of B, each ¥ € B’ is of the form &' = uyb, where
po > 0. Since B’ is standard, the map g: b’ — Ayp+y1 = pilb| is an algebra
homomorphism. Therefore g(b) = plb] is a degree homomorphism of A. By
Proposition 3.12, g(b) = f(b), whence p, = f(b)/|b] and the claim follows. n

4. Properties of real standard GT-algebras

In this section we assume that (A4,B) is a real standard and non-singular
GT-algebra.
Let z € A be an arbitrary element. We define the following subsets:

L,={beBlbzr=|blz}; R,={beB|zb=|blz}; S:=L,NR,.
The following claim was proved in {5].

PrOPOSITION 4.1: Let (A, B) be a real non-singular and standard GT-algebra.
Then for every x € A, x £ 0, L., R,, S are closed subsets of B.

Remark: This Proposition was proved in 5] for combinatorial algebras which,
in our new terminology, are real non-singular and standard GT-algebras.
Analogously, for each A C B we define

La={beB|bACA}; Ra={bcB|AbCA}; Sa=LaNRa.

The following statement connects these definitions with the previous ones.
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PROPOSITION 4.2: Let A C B be an arbitrary subset. Denote A* =37 _, a.
Then the following equalities hold:

(i) La = La+;

(i) Ra = Ra+;

(i) Sa = Sa+.

Proof: The third part of the claim is a direct consequence of the first and second
parts. Part (ii) follows from (i) by applying the antiautomorphism *. Thus we
have to prove only the first part.

The inclusion Lo+ C Lp is evident. Let us prove the reverse inclusion.

Take an arbitrary b € La. Then

(3) bAt = Z a4,

acA
where f1,, @ € A are non-negative real numbers. By Proposition 2.3 part (iii),
pa < |b] for all @ € A. Applying | | to both parts of (3) we obtain

BlIA*E = ualal.

acA
Therefore p, = |b| for all a € A. Thus La C La+. |

Given a € B, we associate a graph I'; (see [10]) as follows:
V([e) =B, E(Tg)={(bc)|Aabe # 0}

Since M, = D(MT)D~1, T'ye =TT where I'7 is obtained from T, by inverting
its edges.

The following fact is well-known in the theory of association schemes. To make
the text self-contained we reproduce its proof.

PROPOSITION 4.3: Let a € B be an arbitrary element. Then the following
conditions are equivalent:

(i} a is faithful;

(ii) Ty is strongly connected.

Proof:  (ii)=(i) Assume that I, is strongly connected. Then for each b € B
there exists a path by = 1, b1,...,bn = b such that (b;,b;+1) € E(T,). This is
equivalent to Agp,s,,, 7# 0 for every i = 0,...,m — 1. Therefore b € Supp(a™) C
B,, implying B, = B.
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(1)=-(ii) Assume that I, is not strongly connected, i.e., there exists a partition
B = BguUB;, By # 0, B; # 0 such that A = 0 for any b € By and ¢ € B;. Then
Supp(aBo) C Bg. By Proposition 4.2, a € LB;r. Since a is faithful, B, = B.
Therefore LB0+ = B, implying By = B, a contradiction. ]

PROPOSITION 4.4: Let (A,B) be a real GT-algebra with standard B. Then for
each a € B and any C C B the following two conditions are equivalent:

(i) Supp(a®a) C Le+;

(ii) there exists D C B such that aC* = |a|D*.

Proof: (i) = (ii). Supp(a*a) C Lo+ & a*aCt = laf’C* = (a*aC*+,C*) =
laf|C*] & (aC*,aC*) = |af°|C*|. Denote D := Supp(aC*). Then aCt =
Y dep iad and {af’|C| = {(aC*,aC*) = Y aep Hildl. Since pg < |al, the right-
hand side of the latter equality is less than or equal to |a| }_,cp pald] = la)’|C].
Therefore yq = |a] holds for all d € D.

(ii) = (i). First we show that a*D C C. Assume the contrary, i.e., there exist
d € D, f ¢ C such that Ag-gr # 0. Then A;54 # 0, implying that the coefficient
of d in a({f} UC)?* is equal to |a| + Ay 4 > |a|, contrary to Proposition 2.3 (iii).
Therefore a*D C C = a*Dt =3 ¢ pec, e € R2?, implying a*aC C C. Since
all structure constants are nonnegative, and by Proposition 4.2, it follows that
Supp(a*a) C Lc = L+ |

4.1 CLOSED SUBSETS AND QUOTIENT ALGEBRAS. Let (A,B) be a real non-
singular GT-algebra. Without loss of generality we may assume that B is stan-
dard. We remind the reader that a subset C C B is closed if the subspace
spanned by C is a GT-algebra with a distinguished basis C. It follows directly
from the axioms of GT-algebra that C is closed if and only if 1 € C, C* = C
and ab =Y . Aabcc for each pair of a,b € C.

The following claim is an immediate consequence of the definition of “closed
subset” and “real”, and the axioms for a GT-algebra.

PROPOSITION 4.5: A subset A C B, A # 0 is closed if and only if Supp(ab*) C B
for all a,b € B.

As usual we define a right (left) C-coset as an arbitrary set of the form dC
(resp. Cb), b € B. A subset CbC, b € B will be called a double coset with
respect to a closed subset C.

An element a € B is called linear (or thin) if aa® = Age+11. Since A is a
finite-dimensional algebra, the above equality implies a*a = Ageq11 = Aga-11.
The set of all linear elements will be denoted by L(B).
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PROPOSITION 4.6: (i) |b] > 1 and equality holds iff b is linear.
(ii) The set L(B) C B of linear elements of B is a group.

Proof: (i) We have that bb* = [b|1 + ) g Assecc. Applying | | to both sides of
this equality we obtain the first part of the claim.

(ii) Let a,b € L(B) be two arbitrary elements. Since both a and b are invertible
in A, ab is an invertible element of A. Thus, we need to show that b,a € L(B)
implies ab € L(B).

Indeed, by Proposition 2.2

(4) Z )‘Zbclcl = Z AasacAbbecle] = 1.
ceB ceEB
On the other hand,
(5) > Aaselel = lallel = 1.
cEB

Together with |c| > 1 this implies Agp. < 1 for each ¢ € B. Let d be an element

with the maximal value of Agpg. Then (4) implies

Aabd = Aabd (Z )\abc|0|> > Nabele = 1,
ceB ceB

whence Agpg > 1. Therefore Agpg = 1. Combining this with (5) and |d] > 1 we
obtain ab=d, d € B. |

Remark: A part of the claim below was proved in [22] for the Bose-Mesner
algebras of homogeneous coherent configurations. The proof given in [22] uses
the geometrical properties of homogeneous coherent configurations. So, here we
give an independent proof, which uses only the axioms of GT-algebras.

PROPOSITION 4.7: Let (A,B) be a non-singular real GT-algebra with standard
B and C < B be an arbitrary closed subset. Then the following conditions hold
for every b,d € B:
(i) CbNCd # B < Cb = Cd, similarly bCNdC # § < bC = dC, and
ChC N CdC # < CbC = CdC. In particular,

{Cbbe B}, {bC|beB}, {CbC|bec B}

are partitions of B.
(i) (CbC)™ = Ch*C.
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(iif) If Cb = bC for each b € B, then CbC = Cb.

Proof: Let a € Cb be an arbitrary element. Then Ay, # 0 for some ¢ € C.
Hence, by Proposition 2.2, Aogp # 0, ie., b € Ca.
Thus if a € CbN Cd, then

Cd Cc CCa = Ca C CCb = Cb.

Similarly, Cb C Cd, implying Cb = Cd.
Let now 2 € CbC N CdC. Then z € Supp(eibes) and z € Supp{czdes) for
suitable ¢1, cg, ¢z, ¢4 € C. This implies

b € Supp(c1*zca*), d € Supp(cs*zes™).

Therefore,

CbC C CSupp(e;*ze”)C ¢ CzC.

Analogously
CdC c CzC.

Combining this with evident inclusions CzC C CbC, CzC C CdC we obtain
CbC = CdC.
Parts (ii} and (iii) are trivial consequences of the first one. |

Proposition 4.8 and Theorem 4.9 generalize Theorem 2 of [7]. The proof of
part (ii) of Proposition 4.8 is similar to that of Theorem 2 of [7].

PROPOSITION 4.8: Let C < B be a closed subset and b € B be an arbitrary
element. Then:
(i) Yeecc- (CH)T = || (Ch)T and (bC)*t - ¢ = || (bC)T;
(i) Ct-b=a-(Cb)*, b-Ct =5 (bC)" for suitable o, B € R;
(iii) C*-b-C*t = - (COC)" for a suitable p € R;
(iv) |(Cb)T| > |CT| (J(®C)*| > |C*|), where equality holds if and only if
Supp(bb*) C C (resp. Supp(b*b) C C).

Proof: (i) Since ¢ € Lgy N Rpe, (i) is an immediate consequence from
Proposition 4.2.

(ii) Denote Cb = {b; = b, ..., b, } just for convenience. We have to show that
C*-b=p (3%, b;). Since the vector space spanned by b;,1 < ¢ < m is invariant
under left multiplication by the elements from C, C* - b; = Z;n:l Wiz, pi; € R
Set M := (pij)1<ij<m. Since (C*)? = |CT|CH, M? = |C|M. It follows from
part (i) that 370, pi; = |C| for each 1 < j < m. The elements of matrix M
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are non-negative real numbers. Moreover, Cb = {by, ..., bp, } implies p1; # 0 for
all 1 € 5 < m. Hence, M is an indecomposable matrix with non-negative real
entries. By the Perron-Frobenius Theorem, |C| is a maximal eigenvalue of M
and the |C|-eigenspace is one-dimensional. The equality M? = |C|M implies that
the columns of M are |Cl-eigenvectors of M. Therefore, they are proportional,
i.e., rank(M) = 1. But the sum of the elements of every column is |C|, whence
all columns of M are equal, i.e., y;; = -+ = pim for each 1 <i < m.

(i) C*-b-C* =3 ccpe M- We have to show that all g, are equal to each
other. By part (ii) of our claim

Ctb-CT=a(Ch"Ct=a ) a,(zC)", a,a,€R.
z€Cb

Therefore pi; = py if ¢ and y lie at the same right C-coset. Analogously, pz = py
if x and y lie at the same left C-coset. Let now z,y € CbC be two arbitrary
elements. Then y € Supp(cizes) for some ¢1,c2 € C. There exists z € B such
that z € Supp(ciz) and y € Supp(zc). Hence p, = p,, as desired.

(iv) It is enough to prove the claim only for right cosets. According to part (iii)
of Proposition 2.3 the coefficient 3 in (ii) is not greater than |b|. Hence |(bC)*| >
|C*|. If 3 = |b], then, by Proposition 2.3, part (ii), we have Supp(b*b} C C. |

Remark: The latter part of the Proposition implies that |CbC| > |C|.
For each element b € B we denote by b/ C the following expression:

bjC=ICH (@)t =|ct T Y d
deChC
THEOREM 4.9: Let C < B be a closed subset and by = 1,b,,. .., b, be a complete
set of representatives of C-double cosets. Then the vector space spanned by the
elements b;/C,1 < i < k is a standard real GT-algebra with a distinguished

basis B/C = {b;/C| 1 < i < k}. The structure constants of this GT-algebra are
given by the following formula:

-1
(6) Yijk = IC+l Z )‘rstv
r€Ch,C,s€Ch; C

where t € Cb,C is an arbitrary element.

Proof: Sinceec = |C*|~ 'C+ is an idempotent, the vector space ec Aec spanned
by the elements ec-b-ec, b € B is a subalgebra of A with the identity ec = b, JC.
By Proposition 4.8 (iii),

ec-b-ec = p|C*|7* (CbC)*
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for a suitable € R. By Proposition 4.7 (CbC)*t = (Cbh;C)* for a suitable
1 £ 7 < m. Therefore, the elements b;/C, 1 <1 < k form a basis of the algebra
ecAec.

If 7vi;% are the structure constants of the algebra ecAec, then

bif/C-b;/C = ik be//C,

k=1

or, equivalently,

(Cb:C)" - (Ch;O)" =|CH| D) i, (CBC)* .

k=1

An element ¢t € Cb,C appears in the left-hand side with the coefficient

/\rst~
r€Cbh; C,5€Cbh,;C

Therefore,
|C+I7ijk = Z )\'rst-
r€Ch;C,5€Ch;C

Thus an algebra AJ/C with a distinguished basis BJC satisfies the axioms
T0,T1. Since ec* = ec, AJ/C is *-invariant. The equality (CbC)* = (Cb*C)
shows that (B/C)* = B//C. Hence A//C satisfies also T2.

In order to check T3 we compute v;;. If (Cb;C)* # Cb;C, then
(Cb,C)* N Cb]C = w and (6) implies Yij1 = 0.If (Cth)* = ijC, then

-1 -1
v =1CH™ Y fal=ICT™" Y el =a

zeCh;C zcCb;*C

as desired.

Thus we have shown that (A/C,B/C) is a real GT-algebra. To finish the
proof we need to check that it is standard.

As we have seen before,

. CHC)H|
e =1CH Y ol = l(|—c+|_ — 15:/C].
z€Cb;C

But the map b; /C — |b;/C| is the restriction of the degree homomorphism of A
onto (A/C,B/C), implying that b; /C ++ ;;+1 is'a homomorphism. ]
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Remark: If Ais a group algebra of a finite group B, then (A, B) is a real non-
singular standard GT-algebra. C C B is a closed subset if and only if C is a
subgroup of B. In this case (A/C, B} C) is a Hecke algebra H(C, B).

The algebra (4/C, B/ C) will be called the quotient of (A, B) by a closed
subset C. It follows from the proof that o(C)o(B/jC) = o(B). If (A,B) is a
Bose-Mesner algebra of a homogeneous coherent configuration, then both o(C)
and o(B//C) are rational integers [22], [20]. If (A4,B) is an arbitrary integral
standard GT-algebra, then o(B/C) may be not integral.

If (4,B),(C,D) are two GT-algebras with the same ring of scalars R, then
one can define their tensor product (A ®g C,B ® D) where the distinguished
basis B @ D is the set of tensors b® d, b € B, d € D. 1t is easy to see that
(A®p C,B ® D) satisfies all the axioms T0-T3. Moreover, if both (4,B) and
(C,D) are standard then so is their tensor product. The same is true for real
algebras.

If (C, D) is standard, then (AQ g C, B®D) contains a subalgebra (A4, B){(C, D)
spanned, as an R-module, by the following basis:

B:D={1®d|deD}U{b@D*|beB,b#1}.

A direct check shows that an R-submodule spanned by the above basis is a
subalgebra of (A ® g C,B ® D) that satisfies all the axioms. In what follows we
shall denote it by (A,B) ! (C,D) and call it the wreath product of (C,D) by
(A,B). The dimension of (41 C,B1D) is always equal to dim(4) 4+ dim{(C) — 1.

Both constructions described above are well known in the theory of homoge-
neous coherent configurations and table algebras [4], [6], [20].

PROPOSITION 4.10: Let (A1 C,B ! D) be the wreath product of two standard
real algebras. Then:

(i) D= {1®d|,d € D} < BID and the GT-algebra spanned by {1®d|,d € D}
is isomorphic to (C, D).
(ii) For each b€ B, D C Sypp+-
(iii) The quotient algebra

((410)/D;(B1D) /D)
is isomorphic to (A, B).

Proof: Part (i) follows directly from the definition of the wreath product, since
(1®d) - (1®d)=1®dd for every pair d,d’ € D.
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(i) Foreachd € D, 1 ®d)- (b D*) = (b®D") - (1 ®d) = |d|(b® DY),
hereby proving this part.
(iii) Since zD = Dz for each z € B D,

D ifz=1®d, deD,

ﬁ—: —._:
zD=zD {{:c} ifz=b@D*, b#1.

Thus we have dim(A4) double cosets, each of them of the form b ® D. Now it
is easy to check that the mapping

1

1D+|(6®D)+ = b

is an isomorphism between GT-algebras
((A1C)/D; (B2 D) /D)

and (A, B). 1

5. Integral standard GT-algebras

A non-singular real GT-algebra is called integral if its structure constants Agse
and the degrees f(b) are integers. An integral commutative GT-algebra is merely
a classical integral table algebra [9].

In this section we always assume that (A,B) is an integral standard GT-
algebra. If d = dim(A), then we can number the elements of B in such a way
that the sequence of the degrees |b;| = 1,|bs), ..., |b4| is not decreasing, i.e.,
[5:] < [bital-

We start from the following simple claim:

PROPOSITION 5.1: Let (A, B) be an integral non-singular standard GT-algebra.
Then:

() Aabelc| = 0 (mod lem(|aljb]));
(ii) | Supp(ab)| < ged(|al, |bl), in particular, | Supp(ab)| = 1 for relatively prime
la] and |b|.

Proof: (i) By Proposition 2.2
)‘abclcl = /\c‘ab‘lbl = )\cb‘alal’

and the claim follows.
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(ii) For each ¢ € Supp(ab), Aasclc| # 0. Together with the previous part of the
claim this implies Agpc|c| > lem([al, [b]) for every ¢ € Supp(ab). Therefore,
lal|5]

Supp(ad)| < ———— = ged(|al, |]). [ |
[Supp(at)| < s = ged(lal, 1)

PROPOSITION 5.2: Let a € B be a faithful element of an integral standard
GT-algebra. Then

Vp(p€n(B)=p<ial).

Proof: Assume the contrary, i.e., there exists a prime p € w(B) such that
p > la|l. Define By = {b € Blp Albl}, By = {b € Blp||b]}. Clearly, B is a
disjoint union of By and B;. Since a¢ € By and p € 7(B), the above sets are
non-empty. By Proposition 4.3 there exist b € By and ¢ € B such that Age # 0.
By Proposition 5.1

Aacp|b] = 0(mod lem(lal, |c])) = Aacs]bl = O(mod plal).

On the other hand, Az, < |a| < p. Therefore |b| = 0(mod p), yielding a
contradiction. 1

Remark: For homogeneous coherent configurations this fact was proven in [18].
The proof given in [18] was reproduced in [12]. For integral standard table
algebras it was proven by H. Blau in [8]. Here we gave the proof that appeared
in [18].

Let a € B be an arbitrary element. We define a!/” = 1 and, for each natural
I €N, we set
ol = {a”_l]a* if I is even,

al'=Ya  otherwise.

Now we can define two functions on B:
d,(b) = min{n |b € Supp(a™)}; Ba(b) = min{n |b € Supp(a™)}.

It is clear that a = a* implies 8, = d,.
In the case, when Y,z (b ¢ Supp(a®)) (respectively Vnezb ¢ Supp(al™)) we
shall write d,(b) = 0o (resp. J,(b) = 00). We shall say that an element a € B is

strongly faithful if 8,(z) # oo for all z € B. It is easy to see that each strongly
faithful element is also faithful.
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PROPOSITION 5.3: An element a € B is strongly faithful if it satisfies at least
one of the following conditions:
(i) a is faithful and a = a*;

(ii) the closed subset generated by Supp(aa*) coincides with B.

Proof: Straightforward.

PROPOSITION 5.4: If 3,(b) =1 > 2, then there exists ¢ € B such that:
(i) 8a(c) S l- 1;
(i1} b € Supp(ca) and |Supp(ca)| > 2,

where & = a* if | is even and @ = a otherwise.

Proof: By definition, b € Supp(al¥) = Supp(al’~1)a. Therefore, there exists
¢ € Supp(al’~) such that b € Supp(ca). Clearly, 8,(c) <1-1.

Since ¢ € Supp(ali~1), there exists d € Supp(al~2) such that ¢ € Supp(da*),
or, equivalently, d € Supp(ca). The elements d and b are different, because of
0,(b) = 1,0,(d) < 1— 2. Therefore, {b,d} C Supp(ca), as desired. |

It is easy to see that 9,(c) exists for each ¢ € B if Supp(aa*) generates B.
The claim below was first proved by H. Blau in [8] in the case of a = a*.

PROPOSITION 5.5: Assume that by is strongly faithful. If |bs| = p, where p is
prime, then p? [|b;| for all1 < j <d.

Proof: Assume that C = {c € B|p?||c]} # 0. Take ¢ € C with the minimal
value [ := 8y, (c). Clearly | > 2. By Proposition 5.4 there exists f € B such that
B, (f) < 1—1,|Supp(fbe)| > 2andc € Supp(fb2) (here " has the same meaning as
in the previous statement). By Proposition 5.1 A f526|c| = 0(mod lem(|bo}, |£]))-
Combining this with |¢| = 0(mod p?) we obtain

Afpgeldl = 0(mod lem(lf],5°)),

implying A, lc| > lem(p?, |£]).

Since 8y, (f) <1—1, f ¢ C, and therefore p? f|f}, whence lem(|f|,p?) > p|f|.
Thus A, -le| > plfl-

On the other hand, A, o < [baflf] = plf|. Therefore, bof = s c and
Supp(bs f) = {c}. This is a contradiction. |

PROPOSITION 5.6: If by is a strongly faithful element of B, then

b:]
|6:—1]

<|bo| -1
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holds for each 3 < i < d.

Proof: Among all b € B that satisfy the inequality |b| > |b;—1| we choose an
element ¢ with a minimal value of 8,(c). By Proposition 5.4 there exists f € B
such that 9, (f) < 8,(c),c € Supp(fby) and there is some c; # ¢ in Supp(fby).
Clearly, |f]| < |bi-1]- So

L1820 2 Agg,olel + A, leal > Nel + 111,

as A gy, le1] = O(mod |f]). 1t follows that |c| < (lb2] — DIf| < (fbe] — 1)bs—1].
1

PROPOSITION 5.7: Let (A, B) be an integral standard GT-algebra. Assume that
there exist b;,b; € B such that |b;} > 1,gecd(]bi, |b;]) = 1. By Proposition 5.1,
Supp(b;b;) = {bx} for a suitable by € B. Assume that |bg| = |b;|. Then:
(1) Supp(bi"b;) C Ls,-
(i1) If bib;™b; = b;*b?, then By, # B.
(iii) If |b;] = |bal, then By, # B.

Proof: (i) Follows directly from Proposition 4.4.
(ii) Set V := {c € B| bic = |b;|f for somef € B and |¢| = |b;|}. Clearly V # 0.
We claim that Supp(b;V) = V. Indeed, if f € Supp(b; V), then there exists
¢ € V such that b;c = |b;]f. Since |f| = |c| = |b;|, we obtain that ged(|bs|,|f]) =
1, from which it follows that b, f = uf’, p < |b;], /' € B. We have

1
|6

1

bi*bif = Ibl

bi*bibic = —bib;*bic = |bi|bic = |b:]’ f.
Now Proposition 4.4 implies p = |by|.

On the other hand, b;*b; f = pb;* f', implying b;* f' = |b:|°/pu f. Hence Ibi|2/li
< |b;] and, consequently, p = |b;}.

Thus f € V and Supp(b;V) = V. This immediately implies b; € Ly. Since
V # B, Ly # B, implying part (ii) of our claim.

(iii) We set V := {c € B| |c| = [b;|}. As before, it is enough to show that
Supp(b;V) = V. Take an arbitrary ¢ € V. Then ged(|d}, |b;]) = 1 implies that
b;c = pf for some f € B. Taking into account that |f| < |bg| = |b;| = l¢| and
p < |b;| we obtain |f] = |bg|. Thus Supp(b; V) = V, as desired. |

Remark: For related results on finite groups see [17].
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ProrositioN 5.8: Let (A, B) be a standard integral GT-algebra. Assume that
B contains a faithful element b € B with |b| =2 and |z| > 2 forallz € B, z # 1.
Then there exists a natural n such that A C ZCsy,1 with a distinguished basis
B={g"4+g7t|i=1,...,n} where g is a generator of Cay 1.

Proof: Let by = 1,bs = b,..., by, be the ordering of the elements of B according
to their degrees (i.e., |b;] < |bit1]). At first we show that Supp(bb*) generates B.

Assume that it is not true. Then bb* = 2 -1 + ¢ for some ¢ € B, || = 2,
¢ = c¢* and |B.| # |B|. By induction on |B|, B, satisfies the conclusion of
Proposition 5.8. Therefore, there exists some d € B, with bb* = 2-1 + ¢ = dd*.
Then (d*b, d*b) = (bb*,dd*) = 6. Since b # d, either d*b € B or d*b = u + v for
suitable u,v € B, |u| = |v} = 2 (u,v may be equal). Therefore (d*b, d*b) € {4,8},
a contradiction.

Thus we may assume that Supp(bb*) generates B. By Proposition 5.6, |b;| <
|b;—1]- Therefore |b;| = 2 for each ¢ =2,...,m.

Since all non-trivial elements of B are of degree 2, for each z € B# there
exists a unique f(z) € B¥ with the property zz* = 2 -1+ f(z). We claim
that f is injective. Indeed, if f(z) = f(y), then (zz*,yy*) = 6, implying a
contradiction. Thus, f is injective and therefore surjective (we remind the reader
that B is finite). Since f(z)* = f(z), each element z € B is real, whence A is
commutative.

All integral table algebras with faithful element of degree 2 were classified in
(9] provided that either the given element is real or there is no non-identity linear
element. Using this classification one can easily complete the proof. |

Proof of Theorem 1.3: (i) If |bz] = 1, then by is linear and therefore L(B) # {1}.
Since L(B) < B, L(B) = B. Thus A is a group algebra of the group B. By
primitivity of A, B has no subgroup. Therefore, B is of prime order.

(ii) is a direct consequence of Proposition 5.2.

(iii) Assume that ged([bs], |b;]) = 1 for some 1 < ¢, 3. Then, by Proposition 5.1
part (i), |Supp(b;b;)| = 1, whence bjb; = pbg,pu € Z for a suitable by € B.
WLOG we may assume that |b;| < |b;]. If |b;] < |bk], then we are done.

Assume now that |b;] = |bk]. Since [bif > [bo], |bi] > 1, implying that
Supp(bib;*) # {1}

B is primitive, hence L(B) = {1} = Ls,. But by Proposition 5.7(i), {1} C
Supp(b;*b;) C Lp;, which is a contradiction.

(iv) follows from Proposition 5.5.

(v} follows from Proposition 5.6.
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(vi) follows from part (iii) of this claim.
(vii) follows directly from Proposition 5.8. |
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